Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T13:25:03.849Z Has data issue: false hasContentIssue false

Octadecylphosphonic Acid Self-Assembled Monolayers as Lubricant Coatings Stable in Alkaline Media

Published online by Cambridge University Press:  01 February 2011

J. Soullier
Affiliation:
Laboratoire d'Analyse des Interfaces et de Nanophysique, UMR CNRS 5011, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier Cedex 5, France Chimie Moléculaire et Organisation du Solide, UMR CNRS 5637, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier Cedex 5, France
P. Tordjeman
Affiliation:
Laboratoire d'Analyse des Interfaces et de Nanophysique, UMR CNRS 5011, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier Cedex 5, France
P. H. Mutin
Affiliation:
Chimie Moléculaire et Organisation du Solide, UMR CNRS 5637, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

The formation of octadecylphosphonic acid self-assembled monolayers (SAMs) on titanium deposited by cathodic sputtering on planar substrates has been studied by water contact angle measurements and Atomic Force Microscopy (AFM). Dense monolayers were obtained after one week of reaction. Tribological experiments indicated that these monolayers had good lubricating properties, which were maintained after immersion in a 1 M NaOH solution at 65 °C for up to 100 min. The stability in alkaline media of octadecylphosphonic acid SAMs on titanium was ascribed to the high chemical stability of Ti-O-P interfacial bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guerrero, G., Mutin, P. H. and Vioux, A., Chem. Mater. 12, 1268 (2000).Google Scholar
2. Randon, J., Blanc, P. and Paterson, R., J. Membr. Sci. 98, 119 (1995).Google Scholar
3. Pechy, P., Rotzinger, F. P., Nazeeruddin, M. K., Kohle, O., Zakeeruddin, S. M., Humphrybaker, R., Gratzel, M., Chem. Commun. 65 (1995).Google Scholar
4. Guerrero, G., Mutin, P. H. and Vioux, A., Chem. Mater. 13, 4367 (2001).Google Scholar
5. Gao, W., Dickinson, L., Grozinger, C., Morin, F. G. and Reven, L., Langmuir 12, 6429 (1996).Google Scholar
6. Helmy, R. and Fadeev, A. Y., Langmuir 18, 8924 (2002).Google Scholar
7. Mc Dermott, M. T., Green, J.-B. D. and Porter, M. D., Langmuir 13, 2504 (1997).Google Scholar
8. Zhou, Y. H., Fan, H., Hong, T. and Lopez, G. P., Langmuir 14, 660 (1998).Google Scholar
9. Ren, S., Yang, S. and Zhao, Y., Langmuir 19, 2763 (2003).Google Scholar
10. Komvopoulos, K., Wear 200, 305 (1996).Google Scholar
11. Zhang, S.-W. and Lan, H.-Q., Tribol. Int. 35, 321 (2002).Google Scholar
12. Zarrad, H., Clechet, P., Belin, M., Martelet, C. and Jaffrezic-Renault, N., Tribol. Int. 28, 241 (1995).Google Scholar
13. Lee, S., Puck, A., Graupe, M., Colorado, R. Jr, Shon, Y.-S., Lee, T. R. and Perry, S. S., Langmuir 17, 7364 (2001).Google Scholar
14. Sung, I.-H., Yang, J.-C., Kim, D.-E. and Shin, B.-S., Wear 255, 808 (2003).Google Scholar
15. Berman, A., Steinberg, S., Campbell, S., Ulman, A. and Israelachvili, J., Tribol. Lett. 4, 43 (1998).Google Scholar
16. Lafond, V., Gervais, C., Maquet, J., Prochnow, P., Babonneau, F. and Mutin, P.H., Chem. Mater. 15, 4098 (2003).Google Scholar