Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T15:36:01.028Z Has data issue: false hasContentIssue false

Ohmic Contact Metallization for n-Type GaAs

Published online by Cambridge University Press:  25 February 2011

M. Murakami
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606 Japan
T. Oku
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606 Japan
A. Otsuki
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606 Japan
C. J. Uchibori
Affiliation:
Department of Metal Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606 Japan
Get access

Abstract

The performance of GaAs devices is significantly influenced by the qualities of the substrates, Schottky and Ohmic contact materials. Development of Ohmic contact materials is far behind compared with that of the other materials. Low resistance, alloyed AuGeNi Ohmic contacts have been extensively used in the current manufacturing GaAs devices. However, extension of usage of these devices to Very Large Scale Integration levels requires the contacts with excellent thermal stability, shallow diffusion depth, and smooth contact surface in addition to low contact resistance. In the present paper recent studies for development of Ohmic contacts which improve the poor contact properties of the alloyed Ohmic contacts are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gunn, J. B., IBM J. Res. Develop. 8 (1964) 141.Google Scholar
2 Hansen, M. and Andeko, K., in “Constitution of Binary Alloys” , McGraw Hill, New York (1958) p.206.Google Scholar
3 Kim, T. and Chung, D. D. L., J. Vac. Sci. Technol. B4 (1986) 762.Google Scholar
4 Auvray, P., Guivarc h, A., L Haridon, H., and Mercier, J. P., Thin Solid Films 127 (1985) 39.CrossRefGoogle Scholar
5 Marlow, G. S., Das, M. B., and Tongson, L., Sol. St. Electron. 26 (1983) 259.Google Scholar
6 Lakhani, A. A., Potter, R. C., and Beyea, D. M., Semicond. Sci. Technol. 3 (1988) 605.CrossRefGoogle Scholar
7 Braslau, N., Gunn, J. B., and Staples, J. L., Sol. Stat. Electron. 10 (1967) 381.CrossRefGoogle Scholar
8 Staples, J. L., U. S. Patent 3, 386, 867 (1968).Google Scholar
9 Gunn, J. B., IEEE Trans. on Electron. Dev. ED 23 (1976) 705.CrossRefGoogle Scholar
10 Callegari, A., Pan, E. T. S., and Murakami, M., Appl. Phys. Lett. 46 (1985) 1141.Google Scholar
11 Callegari, A., Lacey, D., and Pan, E. T. S., Sol. Stat. Electron. 29 (1986) 523.CrossRefGoogle Scholar
12 Callegari, A., Murakami, M., Baker, J. M., Shih, Y. C., and Lacey, D., Proc. 17th Europ. Sol. Stat. Dev. Res. Conf. ESSDERC 87 (1988) 601.Google Scholar
13 Shih, Y. C., Murakami, M., Wilkie, E. L., and Callegari, A., J. Appl. Phys. 62 (1987) 582.CrossRefGoogle Scholar
14 Kamada, M., Suzuki, T., Nakamura, F., Mori, Y., and Arai, M., Appl. Phys. Lett. 49 (1986) 1263.Google Scholar
15 Kuan, T. S., Batson, P. E., Jackson, T. N., Rupprecht, H., and Wilkie, E. L., J. Appl. Phys. 54 (1983) 6952.Google Scholar
16 Murakami, M. and Price, W. H., Appl. Phys. Lett. 51 (1987) 664. 273CrossRefGoogle Scholar
17 Murakami, M., Shih, Y. C., Price, W. H., Wilkie, E. L., Childs, K. D., and Parks, C. C., J. Appl. Phys. 64 (1988) 1974.CrossRefGoogle Scholar
18 Murakami, M., Price, W. H., Greiner, J. H., and Feder, J. D., J. Appl. Phys. 65 (1989) 3539.Google Scholar
19 Anderson, W. T. Jr., Christou, A., and Giuliani, J. F., IEEE Electron. Device Lett. EDL 2 (1981) 115.CrossRefGoogle Scholar
20 Tanahashi, K., Takata, H. J., Otsuki, A., and Murakami, M., J. Appl. phys. 72 (1992) 4183.CrossRefGoogle Scholar
21 Murakami, M., Childs, K. D., Baker, J. M., and Callegari, A., J. Vac. Sci. Technol. B4 (1986) 903.Google Scholar
22 Oku, T., Wakimoto, H., Otsuki, A., and Murakami, M., J. Appl. Phys. 75 (1994) 2522.CrossRefGoogle Scholar
23 Kawata, H. R., Oku, T., Otsuki, A., and Murakami, M., J. Appl. Phys. 75 (1994) 2530.Google Scholar
24 Niessen, A. K., de Boer, F. R., Boom, R., de Châtel, P. F., Mattens, W. C. H., and Miedema, A. R., CALPHAD. 7 (1983) 51.CrossRefGoogle Scholar
25 Kim, H. J., Murakami, M., Price, W. H., and Norcott, M., J. Appl. Phys. 67 (1990) 4183.Google Scholar
26 Wakimoto, H., Oku, T., and Murakami, M., unpublished.Google Scholar
27 Oku, T., Furumai, M., and Murakami, M., unpublished.Google Scholar
28 Kim, H. J., Murakami, M., Wright, S. L., Norcott, M., Price, W. H., and La Tulipe, d., J. Appl. Phys. 68 (1990) 2745.Google Scholar
29 Uchibori, C. J., Okunishi, M., Oku, T., Otsuki, A., Ono, N., and Murakami, M., J. Elect. Mat. (1994) in press.Google Scholar
30 Okunishi, M., Uchibori, C. J., Oku, T., Otsuki, A., Ono, N., and Murakami, M., unpublished.Google Scholar
31 Kajiyama, K., Mizushima, Y., and Sakata, S., Appl. Phys. Lett. 23 (1973) 458.CrossRefGoogle Scholar