Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T15:55:33.490Z Has data issue: false hasContentIssue false

Oligo(phenylenevinylene)s end-capped with phenothiazine or triphenylamine

Published online by Cambridge University Press:  15 February 2011

H. Detert
Affiliation:
Institut fur Organische Chemie, Johannes Gutenberg-Universitat Mainz Duesbergweg 10 - 14, 55099 Mainz, Germany
O. Sadovski
Affiliation:
Institut fur Organische Chemie, Johannes Gutenberg-Universitat Mainz Duesbergweg 10 - 14, 55099 Mainz, Germany
Get access

Abstract

Monodisperse oligo(phenylenevinylene)s end-capped with arylamines have been prepared via Horner Olefinations from bisphosphonates and arylaminobenzaldehydes. The influences of the conjugation length, different arylamine end groups, and of side chains with various electronic character on the electrical and optical properties of the chromophores are investigated. The elongation of the π-conjugated segment from 3 to 5 rings gives rise to bathochromic shifts of the electronic spectra and a slight increase of the oxidation potential. The same but more pronounced is true when the central electron donating ethers are replaced by the strong acceptor alkylsulfone. The electronic spectra of chromophores with triphenylamine and with N-alkylphenothiazines as end groups are quite similar, but the heterocyclic unit reduces the oxidation potential. The incorporation of a chromophor into a segmented copolymer has only negligible effect on the optical and electrical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W., VanSlyke, S. A., Appl. Phys. Lett. 51 913 (1987).Google Scholar
2. Hiramoto, M., Yoshimura, K., Miyao, T., Yokoyama, M., Appl. Phys. Lett. 58 1146 (1991).Google Scholar
3. Adachi, C., Tokito, S., Tsutsui, T., Saito, S., Jap. J. Appl. Phys. 27 L269 (1988).Google Scholar
4. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., Holmes, A. B., Nature 347 539 (1990).Google Scholar
5. Braun, D., Heeger, A. J., Appl. Phys. Lett. 58 1982 (1991).Google Scholar
6. Kraft, A., Grimsdale, A. C., Holmes, A. B., Angew. Chem. 110 416 (1998).Google Scholar
7. Kim, K., Hong, Y.-R., Lee, S.-W., Jin, J.-I., Park, Y., Sohn, B.-H., Kim, W.-H., Park, J.-K., J. Mater. Chem. 11 3023 (2001).Google Scholar
8. Stenger-Smith, J. D., Chafin, A. P., Norris, W. P., J. Org. Chem. 59 6107 (1994).Google Scholar
9. Rost, H., Teuschel, A., Pfeiffer, S., Hörhold, H.-H., Synth. Metals 84 269 (1997).Google Scholar
10. Pfeiffer, S., Rost, H., Hörhold, H.-H., Macromol. Chem. Phys. 200 2471 (1999).Google Scholar
11. Zheng, M., Bai, F., Zhu, D., J. Appl. Polym. Sci. 74 3351 (1999).Google Scholar
12. Kim, H. K., Ryu, M.-K., Cho, S.-W., Park, J.-W., Macromolecules 1114 (1998)Google Scholar
13. Qiu, Y., Duan, L., Hu, X., Zhang, D., Zheng, M., Bai, F., Synth. Metals 123 39 (2001).Google Scholar
14. Hörhold, H.-H., Rost, H., Teuschel, A., Kreuder, W., Spreitzer, H., Proc. SPIE 3148 139 (1997).Google Scholar
15 Wu, T.-Y., Chen, Y., Polym, J.. Sci. A: Polymer Chemistry 40 4452 (2002).Google Scholar
16. Lupton, J. M., Samuel, I. D. W., Beavington, R., Burn, P. L., Bässler, H., Synth. Metals. 116 357 (2001).Google Scholar
17. Stalmach, U.,Detert, H., Meier, H., Gebhardt, V., Haarer, D., Bacher, A., Schmidt, H.-W., Opt. Mater. 9 77 (1998).Google Scholar
18. Detert, H., Schollmeyer, D., Sugiono, E., Eur. J. Org. Chem. (29272001).Google Scholar
19. Strehmel, B., Sarker, A. M., Detert, H., ChemPhysChem 4, 249 (2003).Google Scholar