Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-04T01:00:20.526Z Has data issue: false hasContentIssue false

On Improving the Fracture Toughness of a Niai-Based Alloy by Mechanical Alloying

Published online by Cambridge University Press:  26 February 2011

J. Kostrubanic
Affiliation:
Dept. of Mat. Sci. & Eng., Penn State University, University Park, PA 16802
D.A. Koss
Affiliation:
Dept. of Mat. Sci. & Eng., Penn State University, University Park, PA 16802
I.E. Locci
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135
M. Nathal
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135
Get access

Abstract

Mechanical alloying (MA) has been used to process the NiAl-based alloy Ni-35Al-2OFe such that a fine-grain (∼2 μm) microstructure is obtained through the addition of 2 v/o Y2O3 particles. When compared to a conventionally processed, coarse-grained (∼;28 μm) Ni-35–20 alloy without the Y2O3 particles, the MA alloy exhibits two to three times higher fracture toughness values, despite a 50% increase in yield strength. Room temperature KQ values as high as 34 √Pa m are observed accompanied by a yield strength in excess of 1100 MPa. Fractography confirms a change in fracture characteristics of the fine-grained MA alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noebe, R. D., Bowman, R. R., Kim, J. T., Larsen, M., and Gibala, R. in High Temperature Aluminides and Intermetallics (eds. Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O.), Warrendale, PA: TMS, 1990, p. 271.Google Scholar
2. Vedula, K. nd Khadkikar, P. S., High Temperature Aluminides and Intermetallics, p. 197.Google Scholar
3. Baker, I. and Munroe, P. R., High Temperature Aluminides and Intermetallics, p. 425.Google Scholar
4. Schulson, E. M.: Res. Mech. Letters, 1, 1981, p. 111.Google Scholar
5. Schulson, E. M. and Barker, D. R.: Scripta Metall., 17, 1983, p. 519.Google Scholar
6. Chan, K. S.: Scripta Metall., 24, 1990, p. 1725.CrossRefGoogle Scholar
7. Hahn, K. H. and Vedula, K.: Scripta Metall., 23, 1989, p. 7.Google Scholar
8. Bowman, R. R., Noebe, R. D., and Raj, S. V.. unpublished research.Google Scholar
9. Noebe, R. D., Bowman, R. R., Cullers, C. L., and Raj, S. V., Hi Temp Review 1990, 1990, p. 20–1.Google Scholar
10. Gilman, P. S. and Benjamin, J. S.: Ann. Rev. Mater. Sci., 1983, p. 279.Google Scholar
11. Vedula, K., Michal, G. M., and Figueredo, A. M., Modem Developments in Powder Metall. 20, 1988, p. 491.Google Scholar
12. Whittenberger, J. D., Arzt, E., and Luton, M. J., J. Mater. Res. 5, 1990, p. 271.Google Scholar
13. Kostrubanic, J., Locci, I. E., Nathal, M. V., and Koss, D. A.: unpublished research.Google Scholar
14. Chang, K-M. and Catharine, D. A., Tech. Report No. 90 CRD154, GE Research & Development Center, Aug. 1990.Google Scholar
15. Bradley, A. J.: J. Iron Steel Inst., London, 168, 1951, p. 233.Google Scholar
16. Hellmann, J. R., Koss, D. A., Moose, C. A., Petrich, R. R., and Kallas, M. N.: Hi Temp 1990, 1990, p. 41–1, NASA CP-10051.Google Scholar
17. Reuss, S. and Vehoff, H.: Scripta Metall. 24, 1990, p. 1021.Google Scholar