Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-16T13:34:45.699Z Has data issue: false hasContentIssue false

On the Auger Recombination Process in P-Type Lpe HgCdTe

Published online by Cambridge University Press:  25 February 2011

J. S. Chen
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
J. Bajaj
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
W. E. Tennant
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
D. S. Lo
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
G. Bostrup
Affiliation:
Rockwell International Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360
Get access

Abstract

Minority carrier lifetime measurements at 77K were carried out in ptype liquid phase epitaxial (LPE) Hg 1-xCdx Te/CdTe (x = 0.22) using the photoconductive decay technique. Lifetimes of 20 to 7000 ns were obtained in samples with hole concentrations, p, in the range 1014 to 1016 cm-3. The hole concentrations were determineg by analyzing the Hall data using a double-layer model. It was found that the minority carrier lifetime is inversely proportional to p01.86. This result demonstrates that the Auger mechanism may be the dominant recombination process in p-type LPE Hg0.78 Cd0.22Te/CdTe. The temperature dependence of minority carrier lifetime was also measured between 10 and 200K for several samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, I. M., Capocci, R. A., Charlton, D.E. and Wotherspoon, J. T. M., Solid State Electron. 21, 1475 (1978).CrossRefGoogle Scholar
Pratt, R. G., Hewett, J. and Capper, P., J. Appl. Phys. 60, 2377 (1986).Google Scholar
3. Calas, J., Allegre, J. and Fau, C., Phys. Stat. Sol. B 107, 275 (1981).Google Scholar
4. Kinch, M. A., Brau, M. J. and Simmons, A., J. Appl. Phys. 44, 1649 (1973).Google Scholar
5. Schacham, S. E. and Finkman, E., J. Appl. Phys. 57, 2001(1985)Google Scholar
6. Polla, D. L., Tobin, S. P., Reine, M. B. and Sood, A. K., J. Appl. Phys. 52, 5182 (1981)Google Scholar
7. Casselman, T. N., J. Appl. Phys. 52, 848 (1981).Google Scholar
8. Casselman, T. N. and Petersein, P. E., Solid State Commun. 39, 1117 (1981).Google Scholar
9. Radford, W. A., Shanley, J. F. and Doyle, O. L., J. Vac. Sci. Tech. Al, 1700 (1983)Google Scholar
10. Nimtz, G., Bauer, G., Dornhaus, R. and Muller, K.H., Phys. Rev.,10 3302 (1974).Google Scholar
11. Voitsekhovskii, A. V. and Lilenko, Yu.V Soy. Phys. Semicond. 15, 845 (1981).Google Scholar
12. Polla, D. and Jones, C. E., Solid State Commun. 36, 809 (1980).CrossRefGoogle Scholar
13. Nimtz, G. and Muller, K. H., Phys. Stat. Sol. A22 K215 (1974).Google Scholar
14. Bajaj, J., Shin, S.H., Pasko, J. G. and Khoshnevisan, M., J. Vac. Sci. Tech. Al, 1749 (1983).Google Scholar
15. Pratt, R. G., Hewett, J., Capper, P., Jones, C. L. and Quelch, M. J., J. Appl. Phys. 54, 5152 (1983).Google Scholar
16. Graft, R. D., Carlson, F. F, Dinan, J. H., Boyd, P. R. an Longshore, R. E., Extended Abstracts, 1982 U.S.Workshop on the Physics and Chemistry of Mercury Cadmium Telluride. Google Scholar
17. Chen, M. C., Parker, S. G. and Weirauch, D.F., J. Appl. Phys. 58, 3150 (1985).Google Scholar
18. Lou, L. F. and Frye, W. H., J. Appl. Phys. 56, 2253 (1984).Google Scholar
19. Elliot, C. T. and Spain, I. L., Solid State Commun. 8, 2063 (1970).CrossRefGoogle Scholar
20. Scott, W. and Hager, R.J., J. Appl. Phys. 42, 803 (1971).Google Scholar
21. Chen, J. S. and Tennant, W. E., to be published.Google Scholar