Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T04:45:13.916Z Has data issue: false hasContentIssue false

On the Structure of Thin diamond Films: A 1H and 13C Nuclear Magnetic Resonance Study

Published online by Cambridge University Press:  21 February 2011

J. Shinar
Affiliation:
Ames Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
M. Pruski
Affiliation:
Ames Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Chemistry, Iowa State University, Ames, I A 50011
D. P. Lang
Affiliation:
Ames Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Chemistry, Iowa State University, Ames, I A 50011
S.-J. Hwang
Affiliation:
Ames Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Chemistry, Iowa State University, Ames, I A 50011
H. Jia
Affiliation:
Ames Laboratory - USDOE, Iowa State University, Ames, Iowa 50011 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
Get access

Abstract

The 1H and 13C nuclear magnetic resonance (NMR) of thin diamond films deposited from naturally abundant (1.1 at.%) as well as 50% and 100% 13C-enriched CH4 heavily diluted in H2is described and discussed. Less than 0.6 at.% of hydrogen is found in the films which contain crystallites up to ∼15 μm across. The 1H NMR consists of a broad 50–65 kHz wide Gaussian line attributed to H atoms bonded to carbon and covering the crystallite surfaces. A narrow Lorentzian line was only occasionally observed and found not to be intrinsic to the diamonds. The 13C NMR demonstrates that >99.5% of the C atoms reside in a quaternary diamond-like configuration. The 13C spin-lattice relaxation times T1 are four orders of magnitude shorter than in natural diamond and believed to be due to 13C spin diffusion to paramagnetic centers, presumably carbon dangling bonds. Analysis of T1 indicates that within the 13C spin diffusion length of ∼0.05 μm these centers are uniformly distributed in the diamond crystallites, possibly concentrated on the internal surfaces of a relatively dense system of nanovoids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Glass, J. T., Messier, R., and Fujimori, N., editors, Diamond, Silicon Carbide, and Related Wide Bandgap Semiconductors (Mat. Res. Soc. Proc. 162, Pittsburgh, PA, 1990).Google Scholar
2. Moustakas, T. D., Pankove, J. I., and Hamakawa, Y., editors, Wide Bandgap Semiconductors (Mat. Res. Soc. Proc. 242, Pittsburgh, PA, (1992).Google Scholar
3. Jia, H., Shinar, J., Lang, D. P., and Pruski, M., Phys. Rev. B 48, 17595 (1993).Google Scholar
4. McNamara, K. M. and Gleason, K. K., J. Appl. Phys. 71, 2884 (1992), and references therein.Google Scholar
5. McNamara, K. M., Gleason, K. K., Vestyck, D. J., and Butler, J. E., Diamond and Related Materials 1, 1145 (1992).Google Scholar
6. McNamara, K. M., Levy, D. H., Gleason, K. K., and Robinson, C. J., Appl. Phys. Lett. 60, 580 (1992).Google Scholar
7. Anthony, T. R., in ref. 2, p. 61.Google Scholar
8. McNamara, K. M., Gleason, K. K., and Robinson, C. J., J. Vac. Sci. Technol. A 10, 3143 (1992).Google Scholar
9. Henrichs, P. M., Cofield, M. L., Young, R. H., and Hewitt, J. M., J. Magn. Reson. 58, 85 (1984).Google Scholar
10. Fanciulli, M. and Moustakas, T. D., Phys. Rev. B 48, 14982 (1993).Google Scholar
11. Pruski, M., Lang, D. P., Hwang, S.-J., Jia, H., and Shinar, J., Phys. Rev. B 49, xxxx (1994), and references therein.Google Scholar
12. Wild, Ch., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990).Google Scholar
13. Abragam, A., Principles of Nuclear Magnetism, Oxford University Press (Oxford, 1961), ch. IV.Google Scholar
14. Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).Google Scholar
15. Bloembergen, N., Purcell, E. M., and Pound, R. V., Phys. Rev. 73, 679 (1948).Google Scholar
16. Gutowsky, H. S. and Pake, G. E., J. Chem. Phys. 18, 162 (1950).Google Scholar
17. Duijvestijn, M. J., van der Lugt, C., Smidt, J., Wind, R. A., Zilm, K. W., and Staplin, D. C., Chem. Phys. Lett. 102, 25 (1983).Google Scholar