Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T10:04:59.298Z Has data issue: false hasContentIssue false

Optical and Structural Characterization of Silicon Microstructures Fabricated by Laser Interference Crystallization

Published online by Cambridge University Press:  15 February 2011

D. Toet
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1,70569 Stuttgart, Germany.
G. Aichmayr
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1,70569 Stuttgart, Germany.
M. Mulato
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1,70569 Stuttgart, Germany.
P. V. Santos
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1,70569 Stuttgart, Germany.
A. Spangenberg
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1,70569 Stuttgart, Germany.
R. B. Bergmann
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1,70569 Stuttgart, Germany.
Get access

Abstract

Uniform gratings of sharply defined polycrystalline silicon lines with micrometer-sized periods were created by laser interference crystallization of amorphous silicon. Atomic force microscopy (AFM) reveals that lines fabricated with high pulse energies (380 mJ/cm2) contain large grains (dimensions up to 1.5 μm), growing in a direction perpendicular to the lines. We assign this strong lateral growth to the melting of the material in the center of the lines combined with the presence of small grains, which act as nuclei, at the interfaces with the amorphous regions. Spatially resolved Raman spectroscopy shows that size effects dominate the Raman line shape at the edge of the line, confirming the AFM results, while stress increases towards the center of the line. The spectra measured in the middle of lines created with high energies show doping effects caused by the diffusion of boron atoms from the substrate upon exposure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Poate, J.M. and Mayer, J.W., Laser annealing of semiconductors (Academic Press, New York, 1982).Google Scholar
2. Sameshima, T., Usui, S., and Sekiya, M., J. Appl. Phys. 62, 711 (1987).Google Scholar
3. Im, J. S. and Sposili, R. S., MRS Bulletin 21, 38 (1996).Google Scholar
4. Heintze, M., Santos, P. V., Nebel, C.E., and Stutzmann, M., Appl. Phys. Lett. 64, 3148 (1994).Google Scholar
5. Toet, D., Santos, P.V., Bergmann, R.B., Aichmayr, G., and Heintze, M., in Proceedings of the 23rd ICPS, ed. by Sheffler, M. and Zimmermann, R. (World Scientific, Singapore, 1996), p. 1123.Google Scholar
6. Nebel, C.E., Dahlheimer, B., Karrer, U., and Stutzmann, M., previous paper in these proceedings.Google Scholar
7. Wood, R.F. and Geist, G.A., Phys. Rev. B 34, 2606 (1986).Google Scholar
8. Anastassakis, E. M. and Liarokapis, E., J. Appl. Phys. 62, 3346 (1987).Google Scholar
9. Richter, H., Wang, Z., and Ley, L., Solid State Commun. 39, 625 (1981).Google Scholar
10. Toet, D., Koopmans, B., Santos, P.V., Bergmann, R.B., and Richards, B., Appl. Phys. Lett. 69, 3719 (1996).Google Scholar
11. Cerdeira, F., Fjedly, T., and Cardona, M., Phys. Rev B 8, 4734 (1973).Google Scholar