Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-12T13:30:57.749Z Has data issue: false hasContentIssue false

Optical Band Gap Implications for Ferroelectric Memory Applications

Published online by Cambridge University Press:  15 February 2011

J.D. Klein
Affiliation:
EIC Laboratories, Norwood, MA 02062
S.L. Clauson
Affiliation:
EIC Laboratories, Norwood, MA 02062
Get access

Abstract

Metallic perovskite contact layers enable fatigue-resistant ferroelectric memory capacitors to be obtained. LaNiO3 films atop (100) LaAlO3 substrates exhibit metallic resistivity over a wide range of temperature and oxygen partial pressure. Subsequent deposition of PZT and LaNiO3 thin films atop LaNiO3/LaAlO3 provides parallel-plate ferroelectric capacitor structures. However, the quality of the PZT thin films cannot be reliably indicated by conventional means such as x-ray diffraction. Optical properties of the PZT layers were examined to discern differences in otherwise similar films. The suitability of Au/LaNiO3/PZT/LaNiO3/LaAlO3 devices for nonvolatile memory applications was surveyed through pulsed voltage testing. Observed 1-second remanent polarization (PR [1 sec]) exceeded 35μC/cm2. Long-term memory was demonstrated for up to sixteen hours. No decrease in remanent polarization was apparent after more than 2 × 1010 switching cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ramesh, R., Chan, W.K., Wilkens, B., Sands, T., Tarascon, J.M., Keramidas, V.G., and Evans, J.T. Jr, Integrated Ferroelectrics, Vol. 1, 1 (1992).Google Scholar
2. Char, K., Colclough, M.S., Geballe, T.H., and Myers, K.E., Appl. Phys. Lett. 62, 196 (1993).Google Scholar
3. Wu, X.D., Foltyn, S.R., Dye, R.C., Coulter, Y., and Muenchausen, R.E., Appl. Phys. Lett. 62, 2434 (1993).Google Scholar
4. Klein, J.D., Yen, A., and Clauson, S.L. in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J.M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Proc. 341, Pittsburgh, PA, 1994) pp. 393398.Google Scholar
5. Okada, M. and Tominaga, K., J. Appl. Phys. 71, 1955 (1992).Google Scholar
6. Adachi, H., Mitsuyu, T., Yamazuki, O., and Wasa, K., J. Appl. Phys. 60, 736 (1986).Google Scholar
7. Klein, J.D. and Yen, A. in Ferroelectr ics Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Proc. 243, Pittsburgh, PA 1992) pp. 167172.Google Scholar
8. Klein, J.D., Yen, A., and Cogan, S.F., J. Appl. Phys. 68, 1825 (1990).Google Scholar
9. Heavens, O.S., Optical Properties of Thin Solid Films, (Dover Publications, New York, 1991), pp. 6380.Google Scholar
10. Potter, B.G., Sinclair, M.B., and Dimos, D., Appl. Phys. Lett. 63, 2180 (1993).Google Scholar
11. Reitze, D.H., Haton, E., Ramesh, R., Etemad, S., Leaird, D.E., Sands, T., Karim, Z., and Tanguay, A.R., Appl. Phys. Lett. 63, 596 (1993).Google Scholar
12. Bernacki, S., Jack, L., Kisler, Y., Collins, S., Bernstein, S.D., Hallock, R., Armstrong, B., Shaw, J., Evans, J., Tuttle, B., Hammetter, B., Rogers, S., Nasby, B., Henderson, J., Benedetto, J., Moore, R., Pugh, R., and Fennelly, A., Integrated Ferroelectrics 3, 97 (1993).Google Scholar