Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-14T22:31:36.436Z Has data issue: false hasContentIssue false

Optical Investigation of Strained-Layer GaInAs/GaInAsP Heterostructures

Published online by Cambridge University Press:  22 February 2011

I. Queisser
Affiliation:
4. Physikalisches Institut, Universität Stuttgart Pfaffenwaldring 57, D-70550 Stuttgart, Germany
V. HÄrle
Affiliation:
4. Physikalisches Institut, Universität Stuttgart Pfaffenwaldring 57, D-70550 Stuttgart, Germany
A. DÖrnen
Affiliation:
4. Physikalisches Institut, Universität Stuttgart Pfaffenwaldring 57, D-70550 Stuttgart, Germany
F. Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Get access

Abstract

We performed low temperature photocurrent and photoluminescence excitation spectroscopy on tensile and compressively strained GaxIn1-xAs/GaInAsP quantum well layers to determine the band offset of the heterojunction (0.3 <XGa < 0.7). The ratio of the conduction band discontinuity to the heavy hole discontinuity has been obtained from well to barrier transitions and is found to be about 35/65 for gallium contents between 0.4 and 0.6. We obtained the effective heavy hole mass by comparison of PLE transition energies with calculations of the subband levels. We observe that the effective heavy hole mass increases with the gallium content from 0.3 m0 for XGa = 0.31 to about 0.45m0 for XGa = 0.55.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krijn, M. P. C. M., Hooft, G. W.'t, Boermans, M. J. B., Thijs, P. J. A., Dongen, T. van, Binsma, J. J. M., Tiemeijer, L. F., and Poel, C. J. van der, Appl. Phys. Lett. 61, 1772 (1992).CrossRefGoogle Scholar
2. Chen, Y., Zucker, J. E., Sauer, N. J., and Chang, T. Y., IEEE Photonics Technol. Lett. 4, 1120 (1992).CrossRefGoogle Scholar
3. Wong, S. L., Nicholas, R. J., Cureton, C. G., Jowett, J. M., and Thrush, E. J., Semicond. Sci. Technol. 7, 493 (1992).Google Scholar
4. Gershoni, D., and Temkin, H., J. Luminescence 44, 381 (1989).CrossRefGoogle Scholar
5. Goetz, K. H., Bimberg, D., Jürgensen, H., Selders, J., Solomonov, A. V., Glinski, G. F., and Razeghi, M., J. Appl. Phys. 54, 4543 (1983).Google Scholar
6. Walle, C. G. Van de, Phys. Rev. B 39, 1871 (1989).Google Scholar
7. Krijn, M. P. C. M., Semicond. Sci. Technol. 6, 27 (1991).CrossRefGoogle Scholar
8.Numerical Data and Functional Relationship in Science and Technology’, LandoltBörnstein, New Series, Group III, Vol. 17, (Springer-Verlag, Berlin, 1982)Google Scholar
9. Campi, D. and Villavecchia, C., IEEE J. Quantum Electron. QE-28, 1765 (1992).Google Scholar
10. Bastard, G., Brum, J. A., and Ferreira, R., Solid State Phys. 44, 229 (1991).Google Scholar