Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T13:59:24.027Z Has data issue: false hasContentIssue false

Optical Second Harmonic Generation of Thiols Adsorbed on Gold

Published online by Cambridge University Press:  21 February 2011

M. Buck
Affiliation:
Angewandte Physikalische Chemie der Universität Heidelberg, Im Neuenheimer Feld 253, W-6900 Heidelberg, Fed. Rep., Germany
F. Eisert
Affiliation:
Physikalisches Institut der Universität Heidelberg, Philosophen weg 12, W-6900 Heidelberg, Fed. Rep., Germany
J. Fischer
Affiliation:
Physikalisches Institut der Universität Heidelberg, Philosophen weg 12, W-6900 Heidelberg, Fed. Rep., Germany
M. Grunze
Affiliation:
Angewandte Physikalische Chemie der Universität Heidelberg, Im Neuenheimer Feld 253, W-6900 Heidelberg, Fed. Rep., Germany
F. Träger
Affiliation:
Fachbereich Physik, Universität Kassel, Heinrich-Plett-Str. 40, W-3500 Kassel, Fed. Rep., Germany
Get access

Abstract

The adsorption kinetics of self-assembling n-alkyl thiol films on poly cry stalline gold substrates was studied in situ by optical second harmonic generation (SHG). The relation between the SHG signal change and the thiol coverage was established by comparison with ex situ X-ray photoelectron spectroscopy measurements. We find that the temporal dependence of the adsorption is well described by Langmuir adsorption kinetics. The source of the SHG signal is found to be linearly related to the nonlinear susceptibility of the adsorbate-substrate interaction. Experiments with chain lengths ranging from 1 to 22 showed, that the saturation coverage for thiols longer than hexanethiol is equal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nuzzo, R.G., Dubois, L.H., Allara, D.L., J. Am. Chem. Soc. 112, 558 (1990)CrossRefGoogle Scholar
[2] Hähner, G., Kinzler, M., Wöll, Ch., Grunze, M., Scheller, M.K., Cederbaum, L.S., Phys. Rev. Lett. 67, 851 (1991)Google Scholar
[3] Robinson, G.L., Shannon, V.L., Prog. Surf. Sci. 28, 1 (1988)Google Scholar
[4] Hall, R.B., Russell, J.N., Miragliotta, J., Rabinowitz, P.R., in Chemistry and Physics of Solid Surfaces VIII, p. 87, Springer-Verlag (1990)Google Scholar
[5] Shen, Y.R., Ann. Rev. Phys. Chem. 40, 327 (1989)Google Scholar
[6] Buck, M., Eisert, F., Fischer, J., Grunze, M., Träger, F., Appl. Phys. A 53, 551 (1991)Google Scholar
[7] Bain, C.D., Davies, P.B., Hui Ong, T., Ward, R.N., Brown, M.A., Surf. Interf. Anal. 17, 529 (1991)Google Scholar
[8] Harris, A.L., Chidsey, C.E.D., Levinos, N.J., Loiacono, D.N., Chem. Phys. Lett. 141, 350 (1987)Google Scholar
[9] Volmer, M., Stratmann, M., Viefhaus, H., Surf, and Interf. Anal. 16, 278 (1990)Google Scholar
[10] Stewart, K. R., Whitesides, G. M., Godfried, H. P., Silvera, I. F., Rev. Sci. Instr. 57, 1381 (1986)Google Scholar
[11] Vassilakis, D., Pradier, C.M., Berthier, Y., Oudar, J., Appl. Surf. Sci. 47, 273 (1991)Google Scholar
[12] Koestner, R.J., Stöhr, J., Gland, J.L., Kollin, E.B., Sette, F., Chem. Phys. Lett. 120, 285(1985)Google Scholar
[13] Bain, C.D., Troughton, E. B., Tao, Y.T., Evali, J., Whitesides, G.M., Nuzzo, R.G., J. Am. Chem. Soc. 111, 321 (1989)Google Scholar
[14] Porter, M.D., Bright, T.B., Aliara, D.L., Chidsey, C.E.D., J. Am. Chem. Soc. 109, 3559 (1987)Google Scholar