Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T00:46:18.859Z Has data issue: false hasContentIssue false

Opto-Electronic Properties of Ge and Si Related Nanostructures on Ultrathin Si Oxide Covered Si Surfaces

Published online by Cambridge University Press:  01 February 2011

Masakazu Ichikawa
Affiliation:
ichikawa@ap.t.u-tokyo.ac.jp, University of Tokyo, Department of Applied Physics, Tokyo, Japan
Yoshiaki Nakamura
Affiliation:
nakamura@ee.es.osaka-u.ac.jp, Osaka University, Department of System Innovation, Osaka, Japan
Alexander Shklyaev
Affiliation:
alexsan@mail.ru, The Insititute of Semiconductor Physics, Novosibirsk, Russian Federation
Norohito Fujinoki
Affiliation:
tt076529@mail.ecc.u-tokyo.ac.jp, University of Tokyo, Department of Applied Physics, Tokyo, Japan
Get access

Abstract

We present a method to form semiconductor nanodots on Si substrates by using ultrathin Si oxide technology and the results on their opto-electronic properties. We can form ultra-small semiconductor nanodots with the size of ˜5nm and ultra-high density of ˜1012 cm−2 on Si surfaces covered with ultrathin SiO2 films of ˜0.3nm thickness. We focus on the Ge and GeSn nanodots on Si substrates and those embedded in Si films. These structures exhibit quantum confinement effects and intense luminescence in the energy region of about 0.8 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics (ed. M. Henini, Elsevier 2008).Google Scholar
2. Shiraki, Y. and Sakai, A., Surf. Sci. Rep. 59, 153 (2005).Google Scholar
3. Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
4. Nanoscience and Technology: Lateral Alignment of Epitaxial Quntum Dots, (ed. O. G. Schmidt, Springer 2007).Google Scholar
5. Shklyaev, A. A., Shibata, M. and Ichikawa, M., Phys. Rev. B 62, 1540 (2000).Google Scholar
6. Shklyaev, A. A. and Ichikawa, M., Physics-Uspekhi 51, 133 (2008).Google Scholar
7. Miyata, N., Watanabe, H. and Ichikawa, M., Phys. Rev. Lett. 84, 1044 (2000).Google Scholar
8. Maruno, S., Fujita, S., Watanabe, H., Kusumi, Y. and Ichikawa, M., Rev. Sci. Instrum. 68, 116 (1997).Google Scholar
9. Watanabe, H., Fujita, S., Maruno, S., Fujita, K. and Ichikawa, M., Jpn. J. Appl. Phys. 36, 7777 (1997).Google Scholar
10. Shibata, M., Nitta, Y., Fujita, K. and Ichikawa, M., Phys. Rev. B 61, 7499 (2000).Google Scholar
11. Shklyaev, A. A. and Ichikawa., M., Phys. Rev. B 65, 045307 (2002).Google Scholar
12. Nakamura, Y., Nagadomi, Y., Cho, S-P., Tanaka, N. and Ichikawa, M., J. Appl. Phys. 100, 044313 (2006).Google Scholar
13. Nakamura, Y., Sugimoto, T. and Ichikawa, M., J. Appl. Phys. in press.Google Scholar
14. Nakamura, Y., Watanabe, K., Fukuzawa, Y. and Ichkawa, M., Appl. Phys. Lett. 87, 133119 (2005).Google Scholar
15. Nakamura, Y., Suzuki, R., Umeno, M., Cho, S-P., Tanaka, N. and Ichikawa, M., Appl. Phys. Lett. 89, 123104 (2006).Google Scholar
16. Nakamura, Y., Ichikawa, M., Watanabe, K. and Hatsugai, Y., Appl. Phys. Lett. 90, 153104 (2007).Google Scholar
17. Blumenau, A. T., Jones, R., Oberg, S., Briddon, P. R. and Frauenheim, T., Phys. Rev. Lett. 87, 187404 (2001).Google Scholar
18. Shklyaev, A. A., Nobuki, S., Uchida, S., Nakamura, Y. and Ichikawa, M., Appl. Phys. Lett. 88, 121919 (2006).Google Scholar
19. Shklyaev, A. A., Cho, S-P., Nakamura, Y., Tanaka, N. and Ichikawa, M., J. Phys.: Condens. Matter 19, 136004 (2007).Google Scholar
20. Shklyaev, A. A., Nakamura, Y., Dultsev, F. N. and Ichikawa, M., unpublished.Google Scholar
21. Jenkins, D. W. and Dow, J. D., Phys. Rev. B 36, 7994 (1987).Google Scholar
22. Mader, K. A., Baldereschi, A., and von Kanel, H., Solid State Commun. 69, 1123 (1989).Google Scholar
23. He, G. and Atwater, H. A., Phys. Rev. Lett. 79, 1937 (1997).Google Scholar
24. de Guevara, H. P. L., Rodríguez, A. G., Navarro-Contreras, H., and Vidal, M. A., Appl. Phys. Lett. 84, 4532 (2004).Google Scholar
25. Gurdal, O., Desjardins, P., Carlsson, J. R. A., and Taylor, N., Radmson, H. H., and Sundgren, J.–E., and Greene, J. E., J. Appl. Phys. 83, 162 (1998).Google Scholar
26. Ragan, R., and Atwater, H. A., Appl. Phys. Lett. 77, 3418 (2000).Google Scholar
27. de Guevara, H. P. L., Rodríguez, A. G., Navarro-Contreras, H., and Vidal, M. A., Appl. Phys. Lett. 83, 4942 (2003).Google Scholar
28. D'Costa, V. R., Cook, C. S., Birdwell, A. G., Littler, C. L., Canonico, M., Zollner, S., Kouvetakis, J., and Menéndez, J., Phys. Rev. B 73, 125207 (2006).Google Scholar
29. Niquet, Y. M., Allan, G., Delerue, C., and Lannoo, M., Appl. Phys. Lett. 77, 1182 (2000).Google Scholar
30. Bostedt, , Van Buuren, T., Willey, T. M., Franco, N., and Terminello, L. J., Heske, C., and Möller, T., Appl. Phys. Lett. 84, 4056 (2004).Google Scholar
31. Nakamura, Y., Masada, A., Cho, S.-P., Tanaka, N. and Ichikawa, M., J. Appl. Phys. 102, 124302 (2007).Google Scholar
32. Nakayama, Y., Takase, K., Hirahara, T., Hasegawa, S., Okuda, T., Harasawa, A., Matsuda, I., Nakamura, Y. and Ichikawa, M., Jpn. J. Appl. Phys. 46, L1176 (2007).Google Scholar
33. Nakamura, Y., Masada, A. and Ichikawa, M., Appl. Phys. Lett. 91, 013109 (2007).Google Scholar
34. Nakamura, Y., Fujinoki, N. and Ichikawa, M., unpublished.Google Scholar