Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T08:11:14.445Z Has data issue: false hasContentIssue false

Order-Disorder Transitions in Ternary Alloys A Study on the Microstructure of L10 and L12 Alloys

Published online by Cambridge University Press:  21 February 2011

J. Th. M. De Hosson*
Affiliation:
Department of Applied Physics, Materials Science Centre, University of Groningen, Nijenborgh 18, 9747 AG Groningen, The Netherlands
Get access

Abstract

The order-strengthening mechanism in the ternary alloy, Cu-Ni-Zn, is investigated by comparing stress-strain curves and electron micrographs of corresponding dislocation structure in disordered, partly ordered and ordered samples. Around the composition Cu2NiZn two different types of ordering are found experimentally: L10 and L12. The degree of ordering is determined by measuring the equilibrium distance between superlattice dislocations and by single crystal neutron diffraction. The long-range zinc order parameter thus obtained appeared to be in agreement with calculations using the cluster variation method (CVM) in the tetrahedron approximation. Electron microscopic observations show that even in the disordered phase, when short range order exists, superlattice dislocations are created by Frank-Read sources, rather than the generation of single dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liang, S. J. and Pope, D. P., Acta Met. 25, 485 (1977).Google Scholar
2. Wee, D. M. and Suzuki, T., Trans. JIM 20, 634 (1979).Google Scholar
3. Wee, D. M., Noguchi, O., Oya, Y. and Suzuki, T., Trans. JIM 21, 237 (1980).Google Scholar
4. van der Vegt, W. H. M., van der Wegen, G. J. L., Bronsveld, P. M., De Hosson, J. Th. M., Suppl. Acta Crystall., Vol. A37, C-101 (1981).Google Scholar
5. Brown, N., Phil. Mag. 4, 693 (1959).Google Scholar
6. van der Wegen, G. J. L., Bronsveld, P. M., De Hosson, J. Th. M., Scripta Metall. 14, 285 (1980).Google Scholar
7. Cockayne, D. J. H., Z. Naturf. (a) 27, 452 (1972).Google Scholar
8. Marukawa, K., Phil. Mag. A 40, 303 (1979).Google Scholar
9. van der Wegen, G. J. L., Bronsveld, P. M., De Hosson, J. Th. M., Met. Trans. 12A, 2125 (1981).Google Scholar
10. Hirabayashi, M., Hoshino, S. and Sato, K., J. Phys. Soc. Japan 20, 381 (1965).Google Scholar
11. van der Wegen, G. J. L., Helmholdt, R., Bronsveld, P. M., De Hosson, J. Th. M., to appear Z. f. Metallkunde, September issue (1983).Google Scholar
12. Vrijen, J., Bronsveld, P. M., van der Veen, J., Radelaar, S., Z. f. Metallkunde 67, 473 (1976).Google Scholar
13. de Rooy, A., van Royen, E. W., Bronsveld, P. M., De Hosson, J. Th. M., Acta Metall. 10, 1339 (1980).Google Scholar
14. De Rooy, A., van der Wegen, G. J. L., Bronsveld, P. M., De Hosson, J. Th. M., Scripta Metall. 15, 1362 (1981).Google Scholar
15. Kikuchi, R., Phys. Rev. 81, 988 (1951).Google Scholar
16. De Fontaine, D., in: Solid State Physics, Vol. 34 (Eds.: Ehrenreich, H., Seitz, F., Turnbull, D.), Academic Press, N. Y., p. 73 (1979).Google Scholar
17. van der Wegen, C. J. L., Bronsveld, P. M., De Hosson, J. Th. M., Phil. Mag. A 47, 193 (1983).Google Scholar
18. De Hosson, J. Th. M., Trans. Metall. Soc. AIME (Interatomic Potentials and Crystalline Defects (Ed.: Lee, J. K.), pp 3 (1981).Google Scholar
19. Rudman, P. S., Acta Met. 10, 253 (1962).Google Scholar
20. Moine, P., Eymery, J. P., Grosbras, P., Phys. Stat. Sol. (b) 46, 177 (1971).Google Scholar
21. Stoloff, N. S. and Davies, R. G., Acta Met. 12, 473 (1964).Google Scholar
22. De Groot, J., Bronsveld, P. M., De Hosson, J. Th. M., Phys. Stat. Sol. (a) 52, 635 (1979).Google Scholar
23. van der Wegen, G. J. L., Bronsveld, P. M., De Hosson, J. Th. M., Scripta Met. 14, 285 (1980).Google Scholar
24. Kear, B. H., Acta Metall. 12, 845 (1964).Google Scholar