Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T07:39:07.862Z Has data issue: false hasContentIssue false

The Oxygen Mobility and Catalytic Activity of LaMO3±δ (M=Cr, Mn, Co) Phases

Published online by Cambridge University Press:  10 February 2011

I.A. Koudriashov
Affiliation:
Moscow State University, Chemistry Department, Moscow, Russia
L.V. Borovskikh
Affiliation:
Moscow State University, Chemistry Department, Moscow, Russia
G.N. Mazo
Affiliation:
Moscow State University, Chemistry Department, Moscow, Russia
S. Scheurell
Affiliation:
Humboldt University, Institute of Inorganic Chemistry, Berlin, Germany
E. Kemnitz
Affiliation:
Humboldt University, Institute of Inorganic Chemistry, Berlin, Germany
Get access

Abstract

The activity of LaMO3, where M=Cr, Mn, Co, perovskite-type complex oxides in oxygen diffusion and catalytic processes was investigated. For sample preparation freeze-drying technique was used and dynamic thermal isotope exchange method was used to study exchange reaction between 18O from the gas phase and 16O from the samples synthesized, and to investigate the methane catalytic oxidation reaction. The results obtained allowed to indicate temperature intervals of different types of reaction taking place and that LaCrO3 is far less active in mentioned reactions than LaCoO3 and LaMnO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Helmot, R. von, Wecker, J., Holzapfel, B., Schultz, L., Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
2. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R.L., Chen, H., Science, 64, 413 (1994).Google Scholar
3. Torrance, J.B., Lacorre, P., Asavaroengchai, C., Metzger, R.M., Physica C 182, 351 (1991).Google Scholar
4. Arima, T., Tokura, Y., Torrance, J.B., Phys.Rev. B 48, 17006 (1993).Google Scholar
5. Mineshige, A., Inaba, M., Yao, T., Ogumi, Z., J.Solid State Chem. 121, 423 (1996).Google Scholar
6. Yamaguchi, S., Okimoto, Y, Tokura, Y., Phys. Rev. B 54, RI1 022 (1996).Google Scholar
7. Tejuca, L.G., Fierro, J.L.G., Tascon, J.M.D., Adv. Catal. 36, 237 (1989).Google Scholar
8. Johnson, D.V., Gallacher, P.K., Schrey, F., Rhodes, W.W., Ceram. Bull. 55, 520 (1976).Google Scholar
9. Marchetti, L., Forni, L., Appl. Catal. B 15, 179 (1998).Google Scholar
10. Guilhaume, N., Primet, M., J.Catal. 165, 197 (1997).Google Scholar
11. Kasatkina, L.A., Antoshin, G.V., Kinet.Catal. 4, 252 (1963).Google Scholar
12. Doornkamp, C., Clement, M., Ponec, V., J.Catal, 182, 390 (1999).Google Scholar
13. Wachowski, L., Z. phys. Chemie, Leipzig, 269, 743, (1989).Google Scholar
14. Borovskikh, L.V., Mazo, G.N., Ivanov, V.M., MGU, Vestnik, Khimiya, 40, 402 (1999).Google Scholar
15. Galkin, A.A., Mazo, G.N., Lounin, V.V., Scheurell, S., Kemnitz, E., Rus. J. Phys. Chem, 72, 1459 (1998).Google Scholar
16. Ritter, C., Ibarra, M.R., Teresa, J.M. De, Algarabel, P.A., Marquina, C., Blasco, J., Garcia, J., Oseroff, S., Cheong, S.-W., Phys. Rev. B 56, 8902 (1997).Google Scholar
17. Toepfer, J., Goodenough, J.B., J.Solid. State Chem. 130, 117 (1997).Google Scholar
18. Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., Bader, S.D., Phys. Rev. B 54, 6172 (1996).Google Scholar
19. Hervieu, M., Manesh, R., Rangavittal, N., Rao, C.N.R., Eur. J. Solid State Chem. 32, 79 (1995).Google Scholar
20. Musikantov, V.S., Popovski, V.V., Boreskov, G.K., Kinet. Catal. 5, 624 (1964).Google Scholar
21. Musikantov, V.S., Panov, G.I., Boreskov, G.K., Kinet. Catal. 10, 1047 (1969).Google Scholar
22. Musikantov, V.S., Panov, G.I., Boreskov, G.K., Kinet. Catal. 14, 948 (1973).Google Scholar