Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T12:08:30.798Z Has data issue: false hasContentIssue false

P- and N-Type Microcrystalline SiC Fabricated by rf Plasma CVD with Ethane Gas

Published online by Cambridge University Press:  01 February 2011

T. Toyama
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Y. Nakano
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
T. Kosuge
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
A. Asano
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
H. Okamoto
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan
Get access

Abstract

We have been investigated p- and n-type microcrystalline Si1-xCx (μc-SiC) films fabricated by a conventional rf (13.56 MHz) plasma CVD method with a use of a new carbon source of C2H6 gas at a low substrate temperature on a glass substrate. The Si crystallites incorporated in μc-SiC films retain with a carbon content up to 9 at.%. Both of p- and n-type μc-SiC films show relative high dark conductivities of on the order of 10-3 S/cm with optical energy gaps, E04, of~2eV. In infrared spectra, any pronounced features due to C-Hn vibration mode are not found in C2H6-based μc-SiC films, which is different from the case of CH4-based μc-SiC films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hattori, Y., Kruangam, D., Toyama, T., Okamoto, H., and Hamakawa, Y., J.Non-Cryst. Solids 97&98, 1079 (1987).Google Scholar
[2] Han, M.-K., Matsumoto, Y., Hirata, G., Okamoto, H., and Hamakawa, Y., J. Non-Cryst. Solids 115, 195 (1989).Google Scholar
[3] Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H., and Hamakawa, Y., J. Non-Cryst. Solids 97&98, 293 (1987).Google Scholar
[4] Futagi, T., Katsuno, M., Ohtani, N., Ohta, Y., Mimura, H., and Kawamura, K., Appl. Phys. Lett, 58, 2948 (1991).Google Scholar
[5] Hanaki, K., Hattori, T., and Hamakawa, Y., Proc. of 3rd Intern. PVSEC (1987) p.49.Google Scholar
[6] Wang, C., Lucovsky, G., and Nemanich, R.J., J. Non-Cryst. Solids, 137&138, 741 (1991).Google Scholar
[7] Demichelis, F., Pirri, C.F., Tresso, E., J. Appl. Phys. 72, 1327 (1992).Google Scholar
[8] Wada, T., Kondo, M., and Matsuda, A.., Sol. Energy Mater. &Sol. Cells, 74, 533 (2002).Google Scholar
[9] Itoh, T., Fujiwara, T., Katoh, Y., Fukunaga, K., and Nonomura, S., J. Non-Cryst. Solids, 299–302, 880 (2002).Google Scholar
[10] Toyama, T., Matsui, T., Kurokawa, Y., Okamoto, H., and Hamakawa, Y., Appl. Phys. Lett. 69, 1261 (1996).Google Scholar
[11] Veprek, S., Iqbal, Z., Kuhne, K.O., Capezzuto, P., Sarrot, F.A., and Gimzewski, J.K., J Phys. C 16, 6241 (1983).Google Scholar
[12] Matsui, T., Tsukiji, M., Saika, H., Toyama, T., and Okamoto, H., Jpn. J. Appl. Phys. 41, 20 (2001).Google Scholar
[13] Matsuda, A., Yamasaki, S., Nakagawa, K., Okushi, H., Tanaka, K., Izima, S., Matsumura, M., and Yamamoto, H., Jpn. J. Appl. Phys. 19, 1305 (1980).Google Scholar
[14] Tawada, Y., Tsuge, K., Kondo, M., Okamoto, H., and Hamakawa, Y., J. Appl. Phys. 53, 5273 (1982).Google Scholar
[15] Wieder, H., Cardona, M., and Guarnieri, C.R., Phys. Stat. Sol. (b) 92, 99 (1979).Google Scholar
[16] Katayama, Y. and Shimada, T., Jpn. J. Appl. Phys. suppl. 19-2, 115 (1980).Google Scholar