Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T23:17:51.828Z Has data issue: false hasContentIssue false

Passivation of Oxide Layers on 4H-SiC Using Sequential Anneals in Nitric Oxide and Hydrogen

Published online by Cambridge University Press:  01 February 2011

J. R. Williams
Affiliation:
Physics Department, Auburn University, AL, USA
T. Isaacs-Smith
Affiliation:
Physics Department, Auburn University, AL, USA
S. Wang
Affiliation:
Physics Department, Auburn University, AL, USA
C. Ahyi
Affiliation:
Physics Department, Auburn University, AL, USA
R. M. Lawless
Affiliation:
Physics Department, Auburn University, AL, USA
C.C. Tin
Affiliation:
Physics Department, Auburn University, AL, USA
S. Dhar
Affiliation:
Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA
A. Franceschetti
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
S.T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
L.C. Feldman
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
G. Chung
Affiliation:
Dow Corning Corporation, Midland, MI, USA
M. Chisholm
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Get access

Abstract

The interface passivation process based on post-oxidation, high temperature anneals in nitric oxide (NO) is well established for SiO2 on (0001) 4H-SiC. The NO process results in an order of magnitude or more reduction in the interface state density near the 4H conduction band edge. However, trap densities are still high compared to those measured for Si / SiO2 passivated with post-oxidation anneals in hydrogen. Herein, we report the results of studies for 4H-SiC / SiO2 undertaken to determine the effects of additional passivation anneals in hydrogen when these anneals are carried out following a standard NO anneal. After NO passivation and Pt deposition to form gate contacts, post-metallization anneals in hydrogen further reduced the trap density from approximately 1.5 × 1012 cm−2eV−1 to about 6 × 1011 cm−2eV−1 at a trap energy of 0.1 eV below the band edge for dry thermal oxides on both (0001) and (11–20) 4H-SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schorner, R., Friedrichs, P., Peters, D. and Stephani, D., IEEE Electron Device Lett. 20 (1999) 241.Google Scholar
2. Chung, G., Tin, C.C., Won, J.H. and Williams, J.R., Materials Science Forum 338–342 (2000) 1097.Google Scholar
3. Das, M.K., Um, B.S. and Cooper, J.A., Materials Science Forum 338–342 (2000) 1069.Google Scholar
4. Campi, J., Shi, Y., Luo, Y., Yan, F. and Zhao, J.H., IEEE Trans. Electron Dev. 46(3) (1999) 511.Google Scholar
5. Fukuda, K., Suzuki, S., Tanaka, T. and Arai, K., Appl. Phys. Lett., 76(12) (2000) 1585.Google Scholar
6. Chung, G.Y., Tin, C.C., Williams, J.R., McDonald, K., Weller, R.A., Di Ventra, M., Pantelides, S.T. and Feldman, L.C., Appl. Phys. Lett. 77(22) (2000) 3601.Google Scholar
7. Li, H., Dimitrijev, S., Harrison, H.B. and Sweatman, D., Appl. Phys. Lett. 70(15) (1997) 2028.Google Scholar
8. Chung, G., Tin, C.C., Williams, J.R., McDonald, K., Di Ventra, M., Pantelides, S.T., Feldman, L.C. and Weller, R.A., Appl. Phys. Lett. 76(13) (2000) 1713.Google Scholar
9. Lipkin, L.A., Das, M.K. and Palmour, J.W., Materials Science Forum 389–393 (2002) 985.Google Scholar
10. Chung, G., Tin, C.C., Williams, J.R., McDonald, K., Chanana, R.K., Di Ventra, M., Weller, R.A., Pantelides, S.T., Feldman, L.C., Holland, O.W., Das, M.K. and Palmour, J.W., IEEE Elect. Dev. Lett. 22(4) (2001) 176.Google Scholar
11. Lu, C.Y., Cooper, J.A., Chung, G. and Williams, J.R., Materials Science Forum 389–393 (2002) 977.Google Scholar
12. Dimitrijev, S., Proc. 10th Int'l. Conf. on Silicon Carbide and Related Materials, in press.Google Scholar
13. McDonald, K., Ph.D. dissertation, Vanderbilt University, 2001.Google Scholar
14. Dhar, S., Song, Y.W., Feldman, L.C., Isaacs-Smith, T., Tin, C.C., Williams, J.R., Chung, G., Nishimura, T., Starodub, D., Gustafsson, T. and Garfunkel, E., submitted to Appl. Phys. Lett.Google Scholar
15. Das, M. K., Proc. 10th Int'l. Conf. on Silicon Carbide and Related Materials, in press.Google Scholar
16. Fukuda, K., Suzuki, S. and Tanaka, T., Appl. Phys. Lett. 76(2) (2000) 1585.Google Scholar
17. Suzuki, S., Harada, S., Kosugi, R., Senzaki, J. and K Fukuda, Technical Digest of the 2001 Int'l. Conf. on Silicon Carbide and Related Materials, p. 137.Google Scholar
18. Senzaki, J., Kojima, K., Harada, S., Kosugi, R., Suzuki, S., Suzuki, T. and Fukuda, K., IEEE Electron Dev. Lett. 23(1) (2002) 13.Google Scholar
19. Yano, H., Hirao, T. and Matsunami, H., Appl. Phys. Lett. 78(3) (2001) 374.Google Scholar
20. Yano, H., Kimoto, T. and Matsunami, H., Appl. Phys. Lett. 81(2) (2002) 301.Google Scholar
21. Olafsson, H.O., Gudjonsson, G.I., Hallin, C. and Sveinbjornsson, E.O., Proc. 10th Int'l. Conf. on Silicon Carbide and Related Materials, in press.Google Scholar
22. Ghosh, R.N., Tobias, P. and Golding, B., Proc. Fall 2002 Meeting of the Materials Research Society, paper K7.5.Google Scholar
22. Chung, G., Williams, J.R. and Feldman, L.C., Journal of Physics, in press.Google Scholar
24. Nicollian, E.H. and Brews, J.R., MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York, 1982.Google Scholar