Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-21T08:48:45.530Z Has data issue: false hasContentIssue false

Phase Equilibria and Dielectric Properties of Rare Earth Containing BaTiO3 Ceramics

Published online by Cambridge University Press:  15 February 2011

D. Kolar*
Affiliation:
Jožef Stefan Institute, University of Ljubljana, 1000 Ljubljana, Slovenia, Drago.Kolar@ijs.si
Get access

Abstract

Addition of rare earth oxides affects several properties of barium titanate ceramics such as dielectric constant, Curie temperature and electrical conductivity. Electrical properties depend on the composition, firing conditions and mode of incorporation of rare earth ions into perovskite or perovskite-like lattice.

Incorporation of rare earth ions into the BaTiO3 lattice was studied by quantitative wavelength dispersive spectroscopy in combination with scanning electron microscopy and X-ray powder diffraction. Broad solubility regions between rare earth titanates and barium titanate were detected, influencing the properties.

In present review, phase equilibria and properties of rare earth (La,Nd,Ce) containing BaTiO3 ceramics are compared with particular emphasis on preparation conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonker, G.H., Solid State Electronics 7, p. 895903 (1964)Google Scholar
2. Chen, H.M., Harmer, M.P. and Smyth, D.M., J. Am. Ceram. Soc. 69, p. 507510 (1986)Google Scholar
3. Shannon, D.S., Acta Crystallogr. A 32, p. 751–67 (1976).Google Scholar
4. Makovec, D., Samardžija, Z., and Kolar, D., pp 961966 in Third Euro-Ceramics, Vol. 1, Processing of ceramics (Duran, P. and Fernandez, J. F., eds.) Faenza Editrice Iberica, Castellon de la Plana, 1993 Google Scholar
5. Samardžija, Z., Čeh, M., Makovec, D. and Kolar, D., Microchim. Acta [Suppl.] 13, p. 517523 (1996)Google Scholar
6. Hoffman, A., Z. Physik. Chem 28B, p. 65 (1935).Google Scholar
7. Guha, J.P. and Kolar, D., J. Mat. Sci. 6, p. 11741177 (1971).Google Scholar
8. Roth, R.S., Negas, T., Parker, H.S., Minor, D.B. and Jones, C., Mat. Res. Bull. 12, p. 11731182.(1977).Google Scholar
9. Maister, J.M., Shevchenko, A.V. and Lopato, L.M., Neorgan. Mat 18 (9), 15891590 (1982) (in Russian).Google Scholar
10. Guha, J.P. and Kolar, D., J. Am. Cer. Soc. 56 (1), p. 56 (1973).Google Scholar
11. Kolar, D., Guha, J.P. and Buh, M., Ceramic and dielectric properties of selected compositions in the BaO-TiO2-CeO2 system, pp 152–8 in Proceedings of the Conference on Electrical, Magnetic and Optical Ceramics, London, Dec. 1972 Brit. Ceram. Soc.Google Scholar
12. Saburi, O., J. Phys. Soc. Japan 14 (9), 1159–74 (1959).Google Scholar
13. Ali Nemati, Z., Tabib-Azaz, M. and De Guire, M. R., Br. Ceram. Trans. 92 (3), p. 109113 (1993).Google Scholar
14. Xue, L.A., Chen, Y. and Brook, R.J., J. Mat. Sci. Letters 7, p. 11631165 (1988).Google Scholar
15. Chesney, J. B. and Sauer, H. A., J. Am. Cer. Soc. 45 (9), p. 416422 (1962).Google Scholar
16. Fedorov, N. F., Melnikova, O. V., Saltykova, V. A. and Chistiakova, M., Zh. Neorg. Himii 24 No. 5, p. 1661170(1979).Google Scholar
17. Kirby, K.W., and Wechsler, B. A.. J. Am. Ceram. Soc. 74 (8), p. 1841–47 (1991).Google Scholar
18. Rase, D. E. and Roy, R., J. Am. Cer. Soc. 38 (3), p. 102–13 (1955).Google Scholar
19. Negas, T., Roth, R. S., Parker, H. S. and Minor, D., J. Solid State Chem. 9, p. 297307 (1974).Google Scholar
20. O'Bryan, H. M. Jr, and Thomson, J. Jr. J. Am. Ceram. Soc. 57 (12). p. 522–26 (1974).Google Scholar
21. Lopato, L.M., Ceramurgia Intern. 2 (1), p. 1832 (1976).Google Scholar
22. Kolar, D., Gaberšček, S., Volavšek, B., Parker, H. S., and Roth, R. S.. J. Solid State Chem. 38, p. 158–64(1981).Google Scholar
23. Razgon, R. S., Gens, A. M., Varfolomeev, M. B., Korovin, S. S., and Kostomarov, V. S., Russ. J. Inorg. Chem. 25 (8), p. 1274–75 (1980).Google Scholar
24. Varfolomeev, M. B., Mironov, A. C., Kostomarov, V. S., Golubčova, L. A., and Zolotova, T. A., (in Russ.), Zh. Neorg. Khim. 33 (4), p. 1070 (1988).Google Scholar
25. Jaakola, T., Uusimaki, A., Rautioaho, R., and Leppa-Vuori, S., J. Am. Ceram. Soc. 69 (10), p. C234(1986).Google Scholar
26. Takahashi, J. and Ikegami, T., J. Am. Ceram. Soc. 74 (8), p. 1873–79 (1991).Google Scholar
27. Kolar, D., Gaberšček, S., and Suvorov, D., Structural and Dielectric Properties of Perovskite-like Rare Earth Titanates; pp. 229–34 in Third EuroCeramics, Vol. 2 Edited by Duran, P. and Fernandez, J. F., Faenza Editrice Iberica, Castellón de la Plana, Spain. 1993.Google Scholar
28. Jonker, G. H. and Havinga, E. E., Mater. Res. Bull. 17, p. 345–50 (1982).Google Scholar
29. Saltikova, V. A., Meljnikova, O. V., Leonova, N. V., and Fedorov, F. N., (in Russ.), Zh. Neorg. Khim. 30 (1), p. 190–93 (1985)Google Scholar
30. Makovec, D., Samardžija, Z., Delalut, U. and Kolár, D., J. Am. Ceram. Soc. 78 (8), p. 2193–97(1995).Google Scholar
31. Makovec, D., Samardžija, Z. and Kolár, D., J. Solid State Chem. 123, p. 3038 (1996).Google Scholar
32. Hennings, D.F.K., Schreinemacher, B. and Schreinemacher, H., J. Eur. Ceram. Soc. 13, p. 8188(1994).Google Scholar
33. Leonov, A. J., Piryutko, M. I. and Keller, E. K., Bull. Akad. Nauk USSR, Div. Chem. Sci. (Engl. Transi.) 5, p. 756(1966).Google Scholar
34. Makovec, D. and Kolár, D., Electroceramics V, edited by Baptista, J.L., Vol. 1, (1996). p. 557–60.Google Scholar
35. Gens, A. M., Varfolomeev, M. B., Kostomarov, V. S. and Korovin, S. S., Zh. Neorgan. Khim. 26 (4), p. 896898(1981).Google Scholar
36. Mudrolubova, L. P., Lisker, K. E., Rotenberg, B. A., Limar, T. F. and Borsch, A. N., Ser. Radiodetali & Radiokomponenti 1 (46), p. 38 (1982).Google Scholar
37. Kolár, D., Stadler, Z., Gabršček, S., Suvorov, D., Ber. Dtsch. Keram. Ges. 55 (7). p. 346348 (1978).Google Scholar
38. Valant, M., Suvorov, D. and Kolár, D., Jpn. J. Appl. Phys. 35, p. 144150 (1996).Google Scholar
39. Shannon, R. D., J. Appl. Phys. 73, p. 348– 366 (1983).Google Scholar
40. Negas, T., Yeager, G., Beli, S., Amren, R., p. 21–38 in Chemistry of Electronic Ceramic Materials, (Eds. Davies, P.K. and Roth, R.S.), NIST, SP 804, 2138 (1991)Google Scholar
41. Nishigaki, S., Kato, M., Yano, S. and Kamimura, R., Am. Ceram. Soc. Bull. 66 (9), p. 14051410(1987).Google Scholar
42. O'Bryan, H. M. Jr, Thomson, J. and Plourde, J. K., Ber. Dt. Keram. Ges. 55 (7), p. 348351 (1978).Google Scholar
43. Takahashi, J., Kageyama, K. and Kodaira, M., Jpn. J. Appl. Phys. 32 (9B), p. 43274331 (1993).Google Scholar
44. Wakino, K., Minai, K. and Tamura, H., J. Am. Ceram. Soc. 67 (4), p. 278281 (1984).Google Scholar
45. Negas, T. and Davies, P. K., Ceramic Transactions., Vol. 53, p. 179196 (1995).Google Scholar