Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-22T04:34:36.176Z Has data issue: false hasContentIssue false

Phase Separation In III-V Semiconductors

Published online by Cambridge University Press:  15 February 2011

K. C. Hsieh
Affiliation:
Department of Electrical and Computer Engineering, Center for Compound Semiconductor Microelectronics, and Materials Research Laboratory, University of Illinois, Urbana, IL 61801
K. Y. Cheng
Affiliation:
Department of Electrical and Computer Engineering, Center for Compound Semiconductor Microelectronics, and Materials Research Laboratory, University of Illinois, Urbana, IL 61801
Get access

Abstract

Data are presented to show the morphological instability as well as the occurrence of 1-dimensional phase separation through the spinodal decomposition process in the strained layer heteroepitaxy of short-period superlattices. Biaxial strain has been attributed to be the driving force. With a large net strain in the epitaxial film, > 3.5%, island growth of (InAs)1/(GaAs)1 on GaAs is observed. With a near zero net strain, however, 1-dimensional lateral compositional modulation is observed in the growth of (InAs)2/(GaAs)2 on InP and (InP)2/(GaP)2 on GaAs substrates. Both surface reaction and bulk diffusion take part in forming the ultimate modulation. A small but definitive hydrostatic strain in the metastable Al0.3Ga0.7As film grown at low temperature induces also a 1-dimensional compositional modulation upon annealing at 600°C, a direct evidence of the existence of a miscibility gap in strained AlxGa1-xAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jordan, A. S. and Ilegems, M., J. Phys. Chem. Solids, 36, 329 (1975).Google Scholar
2. Cremoux, B. de, Hirtz, P. and Ricciardi, J., Inst. Phys. Conf. Ser. 56, 115 (1981).Google Scholar
3. Onabe, K., Japan J. Appl. Phys. 22, 663 (1983).Google Scholar
4. Stringfellow, G. B., J. Crystal Growth 27, 21 (1974).Google Scholar
5. Podgorny, M., Czyzyk, M. T., Balzarotti, A., Letardi, P., Motta, N., Kisiel, A., and ZimnalStarnawska, M., Solid State Commun. 55, 413 (1985).Google Scholar
6. Mbaye, A. A., Ferreira, L. G., and Zunger, A., Phys. Rev. Lett. 58, 49 (1987).Google Scholar
7. Cahn, J. W., Acta Met. 9, 975, (1961).Google Scholar
8. Stringfellow, G. B., J. Electronic Materials, 11, 903, (1982).Google Scholar
9. Henoc, P., Izrael, A., Quillec, M., and Launois, H., Appl. Phys. Let. 40, 963 (1982).Google Scholar
10. Glas, F., J. Appl. Phys. 62, 3201 (1987).Google Scholar
11. Special issue on Strained-layer Optoelectronic Materials and Devices, IEEE J. Quantum Electronics, Feb. 1994.Google Scholar
12. Handbook of Deposition Technologies for Films and Coatings, 2nd ed. Bunshah, R. F., Noyes Publicaiton, Park Ridge 1994.Google Scholar
13. Matthews, J. W., Blakeslee, A. E., and Mader, S., Thin Solid Films 33, 253 (1976).Google Scholar
14. Wang, S. M., Anderson, T. G., and Ekenstedt, M. J., Appl. Phys. Lett. 59, 2156 (1991).Google Scholar
15. Luryi, S. and Suhir, E., Appl. Phys. Lett. 49, 140 (1986).Google Scholar
16. Guha, S., Madhukar, A., Kaviani, K. and Kapre, R., J. Vac. Sci. Technol. B8, 149 (1990).Google Scholar
17. DeBoeck, J., Deneffe, K., Christen, J., Arent, D. J., and Borghs, G., Appl. Phys. Lett. 55, 365 (1989).Google Scholar
18. Chen, Y. P., Reed, J. D., Schaff, W. J., and Eastman, L., Appl. Phys. Lett. 65, 2202 (1994).Google Scholar
19. Onuki, A., J. Phys. Soc. Jpn. 58, 3065 (1989).Google Scholar
20. Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., Smith, F. W., Tsaur, B. Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881, (1989).Google Scholar
21. Kaminska, M., Weber, E. R., Liliental-Weber, Z., Leon, R., and Rek, Z.U., J. Vac. Sci. Technol. B7, 710, (1989).Google Scholar
22. Baillargeon, J. N., Cheng, K. Y., Hsieh, K. C., and Stillman, G. E., J. Appl. Phys. 68, 2133 (1990).Google Scholar
23. Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993)Google Scholar
24. Guha, S., Maduhkar, A., and Rajkumar, C., Appl. Phys. Lett. 57, 2110, (1990).Google Scholar
25. Eaglesham, D. J., and Cerullo, m., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
26. Grandjean, N., Massies, J., Leroux, M., Leymarie, J., Vasson, A., and Vasson, A. M., Appl. Phys. Lett. 64, 2664, (1994).Google Scholar
27. Hsieh, K. C., Baillargeon, J. N., and Cheng, K. Y., Appl. Phys. Lett. 57, 2244 (1990).Google Scholar
28. Cheng, K. Y., Hsieh, K. C., and Baillargeon, J. N., Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
29. Pearah, P. J., Stellini, E. M., Chen, A. C., Moy, A. M., Hsieh, K. C., and Cheng, K. Y., Appl. Phys. Lett. 62, 729 (1993).Google Scholar
30. Chou, S. T., Cheng, K. Y., Chou, L. J., and Hsieh, K. C., App. Phys. Lett. 66, 2220 (1995).Google Scholar
31. Kurtenbach, A., Eberl, K. and Shitara, T., Appl. Phys. Lett. 66, 361, (1995).Google Scholar
32. Neave, J. H., Joyce, B.A., Dobson, P.J. and Norton, N., Appl. Phys. A 31, 1, (1983).Google Scholar
33. Pashley, M. D., Haberern, K. W., and Gaines, J. M., Appl. Phys. Lett. 58, 406 (1991).Google Scholar
34. Chen, A. C., Moy, A. M., Cheng, K. Y., Chou, L. J., and Hsieh, K. C., Appl. Phys. Lett. 66, 2694 (1995).Google Scholar
35. Chou, S. T., Cheng, K. Y., Chou, L. J. and Hsieh, K. C. (unpublished).Google Scholar
36. Chen, A. B., and Sher, A., Phys. Rev. B32, 3695 (1985).Google Scholar
37. Wei, S. H., and Zunger, A., Phys. Rev. Lett. 61, 1505 (1988).Google Scholar
38. Balzarotti, A., Letardi, P., and Motta, N., Solid State Commun. 56, 471 (1985).Google Scholar
39. Bublik, V. T. and Leikin, V. N., Phys. Status Solidi A46, 365 (1978).Google Scholar
40. Guido, L. J., Holonyak, N. Jr., Hsieh, K. C., Kaliski, R. W., Plano, W. E., Burnham, R. D., Thornton, R. L., Epler, J. E., and Paoli, T. L., J. Appl. Phys. 61, 1372 (1987).Google Scholar
41. Laidig, W. D., Holonyak, N. Jr., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38, 776, (1981).Google Scholar
42. Anderson, K. K., Donnelly, J. P., Wang, C. A., Woodhouse, J. D, and Haus, H. A., Appl. Phys. Lett. 53, 1632, (1988).Google Scholar
43. Bryan, R. P., Miller, L. M., Cockerill, T. M., Coleman, J. J., Klatt, J. L., and Averback, R. S., Phys. Rev. B41, 3889, (1990).Google Scholar
44. Cook, D. C. and Walters, D. C., Phys. Rev. B42, 3578 (1990).Google Scholar
45. Nolte, D. D., Melloch, M. R., Woodall, J. M., and Ralph, S. J., Appl. Phys. Lett. 62, 1356, (1993).Google Scholar
46. Melloch, M. R., Otsuka, N., Woodall, J. M., Warren, A. C., and Freeouf, J.L, Appl. Phys. Lett. 57, 1531 (1990).Google Scholar
47. Eaglesham, D. J., Pfeiffer, L. N., West, K. W., and Dykaar, D. R., Appl. Phys. Lett. 58, 65 (1991).Google Scholar
48. Wu, C. H. and Hsieh, K. C., J. Appl. Phys. 72, 5642 (1992).Google Scholar
49. Kim, Y. W., Mei, D. H., Lubben, D., Robertson, I., and Greene, J. E., J. Appl. Phys. 76, 1644 (1994).Google Scholar