Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T11:50:03.129Z Has data issue: false hasContentIssue false

Phonon Dispersions of a Single-Wall (8,0) Carbon Nanotube: Effects of the Rotational Acoustic Sum Rule and of Surface Attachment

Published online by Cambridge University Press:  01 February 2011

Nicolas Mounet
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Nicola Marzari
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Get access

Abstract

The lattice dynamics of single-walled carbon nanotubes (SWCNT) is studied from first-principles using density-functional perturbation theory (DFPT) at the GGA-PBE level. The phonon dispersions of a pristine, infinite zigzag (8,0) SWCNT are obtained and the effect of applying the rotational acoustic sum rule on vibrational properties is discussed. Finally we study the effects of covalent functionalizations on the SWCNT phonon frequencies by selectively increasing the effective mass of the carbon atoms that would link to the functional groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. Lett. 86, 11181121 (2001).Google Scholar
2. Sánchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A. and Ordejón, P., Phys. Rev. B 59, 12678 (1999).Google Scholar
3. Dubay, O. and Kresse, G., Phys. Rev. B 67, 035401 (2003).Google Scholar
4. Ye, L.H., Liu, B.G., Wang, D.S. and Han, R., Phys. Rev. B 69, 235409 (2004).Google Scholar
5. Rols, S., Benes, Z., Anglaret, E., Sauvajol, J. L., Papanek, P., Fischer, J. E., Coddens, G., Schober, H. and Dianoux, A. J., Phys. Rev. Lett. 85, 5222 (2000).Google Scholar
6. Reich, S., Thomsen, C. and Maultzsch, J., Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, Germany, 2004), p. 135.Google Scholar
7. Baroni, S., de Gironcoli, S., Dal Corso, A. and Giannozzi, P., Rev. Mod. Phys. 73, 515 (2001).Google Scholar
8. Mounet, N. and Marzari, N., submitted to Phys. Rev. B. Note that for graphite good agreement with experiments was obtained provided the experimental interlayer distance was used in the calculations.Google Scholar
9. Baroni, S., Dal Corso, A., de Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G., Scandolo, S., Chiarotti, G., Focher, P., Pasquarello, A., Laasonen, K., Trave, A., Car, R., Marzari, N. and Kokalj, A., http://www.pwscf.org. Google Scholar
10. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
11. Dal Corso, A., C.pbe-rrkjus.UPF, available at http://www.pwscf.org/pseudo/1.3/UPF/C.pbe-rrkjus.UPF. Google Scholar
12. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
13. Mounet, N. and Marzari, N., in preparation.Google Scholar
14. Figge, M. T., Mostovoy, M. and Knoester, J., Phys. Rev. Lett. 86, 4572 (2001).Google Scholar
15. Kane, C. L., Mele, E. J., Lee, R. S., Fischer, J. E., Petit, P., Dai, H., Thess, A., Smalley, R. E., Verschueren, A. R. M., Tans, S. J. and Dekker, C., Europhys. Lett. 41, 683688 (1998).Google Scholar