Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T12:34:33.728Z Has data issue: false hasContentIssue false

Phosphorus and Boron Doping of a-Si:H Effects of Deposition Temperature

Published online by Cambridge University Press:  26 February 2011

M. J. M. Pruppers
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
K. H. M. Maessen
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
J. Bezemer
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
F. H. P. M. Habraken
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
W. F. van der Weg
Affiliation:
Department of Atomic and Interface Physics, University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
Get access

Abstract

Heavily phosphorus and boron doped hydrogenated amorphous silicon films were deposited in the temperature range 50 to 300 °C. Concentrations of P, B and H, IR spectra and room temperature conductivity have been measured. When the deposition temperature is raised from 50 to 300 °C the concentration of P increases, while the concentration of B decreases. The dark conductivity of both P and B doped films decreases dramatically when the deposition temperature is lowered. We interpret these results on the basis of assumptions concerning the microstructure of the deposited films, and especially the variation of this structure with deposition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Street, R.A., Phys. Rev. Lett. 49, 1187 (1982).Google Scholar
2. Stutzman, M., Mat. Res. Soc. Conf. Proc. 70, (1986) 203.Google Scholar
3. Pruppers, M.J.M., Zijderhand, F., Habraken, F.H.P.M. and van der Weg, W.F., Mat. Res. Soc. Conf. Proc. 48, 409 (1985).Google Scholar
4. Pruppers, M.J.M., Zijderhand, F., Maessen, K.H.M., Bezemer, J., Habraken, F.H.P.M. and van der Weg, W.F., Nucl. Instrum. & Meth. B15, 512 (1986).Google Scholar
5. Pollock, G.A., Mat. Res. Soc. Conf. Proc. 48, 379 (1985).Google Scholar
6. Drevillon, B. and Toulemonde, M., J. Appl. Phys. 58, 535 (1985).Google Scholar
7. Matsuda, A. and Tanaka, K., J. Appl. Phys. 60, 2351 (1986).Google Scholar
8. Lucovsky, G., J. Non-Cryst. Solids 76, 173 (1985).Google Scholar
9. Pankove, J.I. and Dresner, J., Mat. Res. Soc. Conf. Proc. 48, 209 (1985).Google Scholar
10. Pankove, J.I., Zanzucchi, P.J., Magee, C.W. and Lucovsky, G., Appl. Phys. Lett. 46, 421 (1985).Google Scholar
11. Knights, J.C., J. Non-Cryst. Solids 35&36, 159 (1980).Google Scholar
12. Pruppers, M.J.M., Smit, C., Verberkt, P.G.H., Habraken, F.H.P.M. and van der Weg, W.F., to be published.Google Scholar