Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T06:10:55.662Z Has data issue: false hasContentIssue false

Photo-Assisted RIE of GaN in BCl3/Cl2/N2

Published online by Cambridge University Press:  10 February 2011

N. Medelci
Affiliation:
Nitride Materials and Devices Laboratory, SVEC-University of Houston, Houston, TX
A. Tempez
Affiliation:
Nitride Materials and Devices Laboratory, SVEC-University of Houston, Houston, TX
I. Berishev
Affiliation:
Nitride Materials and Devices Laboratory, SVEC-University of Houston, Houston, TX
D. Starikov
Affiliation:
Nitride Materials and Devices Laboratory, SVEC-University of Houston, Houston, TX
A. Bensaoula
Affiliation:
Nitride Materials and Devices Laboratory, SVEC-University of Houston, Houston, TX
Get access

Abstract

Gallium nitride (GaN) has been under intense investigation due to its unique qualities (wide band gap, chemical and temperature stability) for optoelectronic and high temperature/high power applications. To this end, reactive ion etching (RIE) experiments were performed on GaN thin films using BCl3/Cl2/Ar. These resulted in etch rates of 1400 Å/min at −400 V dc bias. However, rough etched surfaces, nitrogen surface depletion and high chlorine content were observed. In order to remedy these shortcomings, a photo-assisted RIE process using a filtered Xe lamp beam was developed, resulting in higher etch rates but again in nitrogen depleted surfaces. Preliminary results on using nitrogen instead of argon in the process chemistry show a big improvement in photo-asssisted etch rates (50%) and Ga/N ratio (0.78 versus 1.25). In this paper, the effects of epilayer doping, dc bias, nitrogen flow rate and photo-irradiation flux on GaN etch rates, surface morphology and composition are presented. Finally, preliminary results on the use of a KrF excimer laser beam in the GaN photo-assisted RIE process are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Medelci, N., Tempez, A., Kim, E., Badi, N., Starikov, D., Berichev, I., and Bensaoula, A., Mat. Res. Soc. Symp. Proc. 512,285 (1998).10.1557/PROC-512-285Google Scholar
2 Tempez, A., Medelci, N., Badi, N., Starikov, D., Berishev, I., and Bensaoula, A., 3Photoenhanced reactive ion etching of HlI-V nitrides in BCIl/CI/yAr/N2 plasmas”, to be published in J. Vac. Sci. and Technol. A (1999).10.1116/1.581748Google Scholar
4 Adesida, I., Mahajan, A., Andideh, E., Khan, M- Asif, Olsen, D. T., and Kuznia, J. N., Appl. Phys. Lett. 63(20), 2777 (1995)10.1063/1.110331Google Scholar
4 Heon Lee, David 2B7. 7O7b (e1r9m9a3n). and Harris, James S. Jr, Appl. Phys. Lett. 67(12), 1754 (1995).Google Scholar
5 Lin, M E., Fan, Z. F., Ma, Z., Allen, L. H., and MorkoK, H., Appl. Phys. Lett. 64(7), 887 (1994).10.1063/1.110985Google Scholar
6 Ping, A. T., Adesida, I., Khan, M. Asif and Kuznia, J. N., Electronics Letters, Vol. 30, No. 22, 1895(1994).10.1049/el:19941247Google Scholar
7 Vartuli, C. B., Pearton, S. J., Lee, J. W., McKenzie, J. D., Abernathy, C.R., and Shul, R. J., J. Vac. Sci. and Technol. A 15(3), 638 (1997).10.1116/1.580697Google Scholar
8 McLane, G. F., Monahan, T., Eckart, D. W., Pearton, S. J., and Abernathy, C. R., J. Vac. Sci. and Technol. A 14(3), 1046 (1996).10.1116/1.580131Google Scholar
9 Vartuli, C. B., Pearton, S. J., Abernathy, C.R., and Shul, R. J., Howard, A. J., Kilcoyne, S. P., Parmeter, J. E. and Hagerott-Crawford, M., J. Vac. Sci. and Technol. A 14(3), 1011 (1996).10.1116/1.580123Google Scholar
10 McLane, G. F., Casas, L., Pearton, S. J., and Abernathy, C. R., Appl. Phys. Lett. 66(24), 3328 (1995).10.1063/1.113746Google Scholar
11 McLane, G. F., Casas, L., Lareau, R. T., Eckart, D. W., Vartuli, C. B., Pearton, S. J., and Abernathy, C. R., J. Vac. and Sci. Technol. A 13(3), 724 (1995).10.1116/1.579815Google Scholar
12 Cho, Hyun, Vartulh, C. B., Donovan, S. M., Abernathy, C.R., Pearton, S. J., Shul, R. J., Constantine, C., J. Vac. Sci. and Technol. A 16(3), 1631 (1998).10.1116/1.581132Google Scholar
13 Shul, R. J., Willinson, C. G., Bridges, M. M., Han, J., Lee, J. W., Pearton, S. J., Abernathy, C.R., McKenzie, J. D, Donovan, S. M., Zhang, L., and Lester, L. F., J. Vac. Sci. and Technol. A 16(3), 1621 (1998).10.1116/1.581130Google Scholar
14 Ping, A. T., Adesida, I., AsifKhan, M., Appl. Phys. Lett. 67(9), 1250 (1995).10.1063/1.114387Google Scholar
15 Gillis, H. P., Choutov, D. A., Martin, K. P., Bremser, M. D., and Davis, R. F., Journal of Electronics Materials Vol. 26 No. 3 (1997).10.1007/s11664-997-0168-7Google Scholar
16 Houle, F.A., Phys. Rev. B19, 10120(1989).10.1103/PhysRevB.39.10120Google Scholar
17 Takatani, S., Yamamoto, S., Takawaza, H., and Mochiji, K., J. Vac. Sci. and Technol. B13(6) 2340 (1995).10.1116/1.588070Google Scholar
18 Leonard, R.T., Bedair, S. M., Appl. Phys. Lett. 68(6), 794 (1996).10.1063/1.116535Google Scholar
19 Berishev, I., Kim, E., and Bensaoula, A., J. Vac. Sci. and Technol. A16(5), 2791 (1998).10.1116/1.581423Google Scholar