Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T09:25:13.827Z Has data issue: false hasContentIssue false

The Photocarrier Grating and Its Applications in the Study of A-Si:H Materials and Devices

Published online by Cambridge University Press:  21 February 2011

I. Balberg*
Affiliation:
The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
Get access

Abstract

To date the photocarrier grating (PCG) technique is widespread among a- Si:H researchers. This technique is presently the only available technique for the determination of the minority carrier diffusion length in materials where this length is in the submicron range. The basic idea or the PCG technique will be presented, and results which follow its fruitful use in the study of a-Si:H materials and devices will be reviewed. Finally some future studies of these materials by the PCG method will be suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rose, A., RCA Review 32, 362 (1951).Google Scholar
2. Ritter, D., Zeldov, E. and Weiser, K., Appl. Phys. Lett. 49, 79 (1986) J. Appl. Phys. 62, 4563 (1987).CrossRefGoogle Scholar
3. Rose, A., Concepts in Photoconductivity and Allied Problems (Wiley, New York, 1963).Google Scholar
4. Kagawa, T., Matsumoto, N. and Kumabe, K., Phys. B 28, 4570 (1983),Google Scholar
Vaillant, F. and Jousse, D., Phys. Rev. 34, 4088 (1986),CrossRefGoogle Scholar
Mendoza, D. and Pickin, W., Phys. Rev. B 40, 3914 (1989).CrossRefGoogle Scholar
5. Bauer, G.H., Nebel, C.E., and Mohring, H.-D., Mat. Res. Soc. Symp. Proc. 118, 679 (1988).CrossRefGoogle Scholar
6. Balberg, I., Delahoy, A.E. and Weakliem, H.A., Appl. Phys. Lett. 53, 992, 1949 (1988).CrossRefGoogle Scholar
7. Orton, J.W. and Blood, P., The Electrical Characterization of Semiconductors: Measurement of Minority Carrier Properties (Academic, London, 1990).Google Scholar
8. Ritter, D., Zeldov, E. and Weiser, K., Phys. Rev. B 38, 8296 (1988).CrossRefGoogle Scholar
9. Hubin, J., Sauvain, E. and Shah, A., IEEE Trans. Elect. Devices 36, 2789 (1989).CrossRefGoogle Scholar
10. Li, Y.-M., Phys. Rev. B 42, 9025 (1990).CrossRefGoogle Scholar
11. Balberg, I., J. Appl. Phys. 67, 6329 (1990).CrossRefGoogle Scholar
12. Hattori, K., Okamoto, H. and Hamakawa, Y., Phys. Rev. B 45, 1126 (1992).CrossRefGoogle Scholar
13. Balberg, I. and Weisz, S.Z., Appl. Phys. Lett. 59, 1726 (1991), and to be published.CrossRefGoogle Scholar
14. Crandall, R.S. and Balberg, I., Appl. Phys. Lett. 58, 508 (1991).CrossRefGoogle Scholar
15. Balberg, I., Phys. Rev. B 44, 1628 (1991).CrossRefGoogle Scholar
16. Balberg, I. and Weisz, S.Z., J. Appl. Phys. 70, 2204 (1991).CrossRefGoogle Scholar
17. Yang, L., Catalano, A., Arya, R.R. and Balberg, I., Appl. Phys. Lett. 52, 508 (1990).Google Scholar
18. Street, R.A., Zesch, J. and Thompson, M.J., Appl. Phys. Lett. 43, 672 (1983),CrossRefGoogle Scholar
Jousse, D., Chaussat, C., Vaillant, F., Brugere, J.C. and Lesimple, F., J. Non Cryst. Solids 77–78 627 (1985).CrossRefGoogle Scholar
19. Drory, A. and Balberg, I., to be published.Google Scholar
20. Crandall, R.S., in Semiconductors and Semimetals, edited by Pankove, J.I. (Academic, New York, 1984). Vol. 21 Part C, p. 245.Google Scholar
21. Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1969).Google Scholar
22. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S. and Balberg, I., J. Appl. Phys. 69, 6728 (1991), and to be published.CrossRefGoogle Scholar
23. Shah, A., Sauvain, E., Wyrsch, N., Curtins, H., Leutz, B., Shen, D.S., Chu, V., Wagner, S., Schade, H. and Chao, H.W.A., Proc. of the XXth PVSC (IEEE, New York, 1988), p. 282.Google Scholar
24. Yang, L., Balberg, I., Catalano, A. and Bennett, M., Mat. Res. Soc. Symp. Proc. 192, 243 (1990).CrossRefGoogle Scholar
25. Balberg, L. and Weisz, S.Z., J. Appl. Phys. 66, 215 (1989).CrossRefGoogle Scholar
26. Crandall, R.S., unpublished.Google Scholar
27. Yang, L., Chen, L. and Catalano, A., Mat. Res. Soc. Symp. Proc. 219 (1991), in press.CrossRefGoogle Scholar
28. Tsuo, Y.S., Xu, Y., Balberg, I. and Crandall, R.S., Proc. XXII and PVSC (IEEE, New York, 1991), in press.Google Scholar
29. Liu, J.Z., Li, X., Cabarrocas, P.R.i, Conde, J.P., Maruyama, A., Park, H., Wagner, S. and Delalhoy, A.E., Proc. XXIst PVSC (IEEE, New York, 1990), p. 1606 Google Scholar
30. McMahon, T.J. and Crandall, R.S., Phil. Mag. B 61 425 (1990) and Refs. therein.CrossRefGoogle Scholar
31. Liu, J.Z., Maruyama, A., Wagner, S. and Delahoy, A., J. Non Cryst Solids 114, 363 (1989).CrossRefGoogle Scholar
32. Haridim, M., Kurin, E., Weiser, K. and Mell, H., J. Non Cryst. Solids (1991), in press.Google Scholar
33. Li, Y.-M., Dawson, R.M., Wronski, C.R., Collins, R.W. and Wiedeman, S., Appl. Phys. Lett. 59, 2549 (1991).CrossRefGoogle Scholar
34. Crandall, R.S., Mahan, H.A., Nelson, B., Vanecek, M. and Balberg, I., Tech. Digest of the 6th PVSEC, New Delhi, 1992, and to be published.Google Scholar
35. Sauvain, E., Shah, A., Hubin, J. and Pipoz, P., J. Non Cryst. Solids. 137–138 475 (1991).CrossRefGoogle Scholar
36. Sauvain, E., Shah, A. and Pipoz, P., Phil. Mag. Lett. 64, 4 (1991).Google Scholar
37. Shah, A., Hubin, J. and Sauvain, E., Tech. Digest of the 5th PVSEC, Kyoto (1990), p. 821.Google Scholar
38. Balberg, I., Delahoy, A.E. and Weakliem, H.A., Proc. of the XXth PVSC (IEEE, New York 1988), p. 352.Google Scholar
39. Misiakos, K. and Lindholm, F.A., J. Appl. Phys. 64, 383 (1988). See this paper for a brief review on earlier works.CrossRefGoogle Scholar
40. Hack, M. and Shur, M., J. Appl. Phys. 58, 997 (1985).CrossRefGoogle Scholar
41. Wang, F., Muschik, T., Fischer, T., Bollu, M., Kolodzey, J. and Schwarz, K., J. Non. Cryst. Solids 137–138 1143 (1991).CrossRefGoogle Scholar