Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-16T01:03:54.744Z Has data issue: false hasContentIssue false

Photoluminescence Fatigue in CdTe Photovoltaics

Published online by Cambridge University Press:  01 February 2011

Diana Shvydka
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606
C. Verzella
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606
V. G. Karpov
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606
Get access

Abstract

Junction photoluminescence intensity (PL) in polycrystalline CdTe/CdS solar cells gradually decreases over time, similar to the PL fatigue in chalcogenide glasses. We discriminate between the fatigue per se and concomitant short-time PL drop due to the laser heating. The fatigue is more profound at higher temperatures and laser beam powers and can be as large as 80 percent in two hours. We attribute the observed phenomenon to defect creation by the light-generated electrons and holes. The defects provide additional non-radiative recombination channels. Simultaneously, this negative feedback makes the defect-generation rate slowing down, so that the PL fatigue saturates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Street, R.A., Phys. Rev. B 17, 3984 (1978).Google Scholar
2. Mamontova, T. N. and Chernyshev, A. V., Soviet Physics - Semiconductors 18, 332 (1984).Google Scholar
3. Guidotti, D., Hasan, Eram, Hovel, H.J., and Albert, Marc, Appl. Phys. Lett. 50, 912 (1987).Google Scholar
4. Raja, M.Y.A., Brueck, S.R.J., Osinski, M., and McInerney, J., Appl. Phys. Lett. 52, 625 (1988).Google Scholar
5. Guidotti, D. and Hovel, H.J., Appl. Phys. Lett. 53, 927 (1988).Google Scholar
6. Guidotti, D. and Hovel, H.J., Appl. Phys. Lett. 53, 1411 (1988).Google Scholar
7. Kim, Bosang, Kuskovsky, I., Herman, Irving P., Li, D., and Neumark, G.F., J. Appl. Phys. 86, 2034 (1999).Google Scholar
8. Laiho, R., Pavlov, A., and Hovi, O., Tsuboi, T., Appl. Phys. Lett. 63, 275 (1993).Google Scholar
9. Chang, I. M., Pan, S. C., and Chen, Y. F., Phys. Rev. B 48, 8747 (1993).Google Scholar
10. Haugen, G.M, Guha, S., Cheng, H., DePuydt, J.M., Haase, M.A., Hofler, G.E., Qiu, J., and Wu, B.J., Appl. Phys. Lett. 66, 358 (1995).Google Scholar
11. Harju, R., Karpov, V.G., Grecu, D., and Dorer, G., J. Appl. Phys. 88, 1794 (2000).Google Scholar
12. Karpov, V. G., Compaan, A. D., and Shvydka, Diana, Appl. Phys. Lett. 80, 256 (2002).Google Scholar
13. Levi, D. H., Woods, L. M., Albin, D. S., Gessert, T. A., Reedy, R. C., and Ahrenkiel, R. K., 2d World Conference on Photovoltaic Solar energy Conversion, Vienna, Austria (1998).Google Scholar
14. Shvydka, D., Compaan, A. D., and Karpov, V. G., J. Appl. Phys. 91, 9059 (2002).Google Scholar
15. Shvydka, D., Karpov, V. G., and Compaan, A. D., Appl. Phys. Lett. 80, 3114 (2002).Google Scholar
16. Redfield, D. and Bube, R., Photoinduced Defects in Semiconductors, Cambridge University Press, 1996.Google Scholar