Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T23:09:17.614Z Has data issue: false hasContentIssue false

Photoluminescence of Chemically Etched Polycrystalline and Amorphous Si Thin Films

Published online by Cambridge University Press:  25 February 2011

A. J. Steckl
Affiliation:
Nanoelectronics Laboratory, Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45221-0030
J. Xu
Affiliation:
Nanoelectronics Laboratory, Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45221-0030
H. C. Mogul
Affiliation:
Nanoelectronics Laboratory, Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45221-0030
Get access

Abstract

Si thin films were deposited on quartz at temperatures ( TD ) ranging from 540 to 640°C. X-ray diffraction indicates that films deposited at TD < 580°C are amorphous, while those deposited above 600°C are poly-crystalline with a <220> texture. The Si films were made porous by stain-etching in HF:HNO3:H2O. Only Si films deposited at 590°C and above show photoluminescence (PL), centered at ∼650-670 nm under UV excitation. Films deposited at TD < 580°C do not luminesce even after very long etch times, which produce a highly porous structure. The PL intensity and the x-ray signal follow a very similar trend with TD. It appears that a minimum level of crystallinity is required for photoemission in porous Si and that a strong relationship exists between them.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
3. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
4. Koshida, N. and Koyama, H., Jap. J. Appl. Phys. 30, Pt. 2, L1221 (1991).Google Scholar
5. Cullis, A. G. and Canham, L. T., Nature, 353, 335 (1991).Google Scholar
6. Nishida, A., Nakagawa, K., H. Kakibayashi and Shimada, T., Jap. J. Appl. Phys. 31, Pt. 2, L1219 (1992).Google Scholar
7. Prokes, S. M., Carlos, W. E. and Bermudez, V. M., Appl. Phys. Lett. 61, 1447 (1992).Google Scholar
8. Prokes, S. M., Glembocki, O. J., Bermudez, V. M. and Kaplan, R., Phys. Rev B, 45, 13788 (1992).Google Scholar
9. Searson, P. C., Macaulay, J. M., and Prokes, S. M., J. Electrochem. Soc. 139, 3373 (1992).Google Scholar
10. Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
11. Daék, P., Rosenbauer, M., Stutzmann, M., Weber, J. and Brandt, M.S., Phys. Rev. Lett. 69, 2531 (1992).Google Scholar
12. Bustarret, E., Ligeon, M., Bruyere, J. C., Muller, F., Herino, R., Gaspard, F., Ortega, L., and Stutzmann, M., Appl. Phys. Lett. 61, 1552 (1992).Google Scholar
13. Jung, K. H., Shih, S., Kwong, D. L., Cho, C. H., and Gnade, B. E., Appl. Phys. Lett. 61, 2467 (1992).Google Scholar
14. Steckl, A. J., Xu, J., Mogul, H. C., Appl. Phys. Lett. 62, 2111 (1993)Google Scholar
15. Fathauer, R. W., George, T., Ksendzov, A., and Vasquez, R. P., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
16. Sarathy, J., Shih, S., Jung, K. H., Tsai, C., Li, K.-H., Kwong, D. L., Campbell, J. C., Yau, S-L., and Bard, A. J., Appl. Phys. Lett. 60, 1532 (1992).Google Scholar
17. Cullity, B. D., Elements of X-ray Diffraction, (Addison-Wesley, Reading, MA, 1967).Google Scholar
18. Harbeke, G., Kruasbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., J. Electrochem. Soc. 131, 675 (1984).Google Scholar
19. Kamins, T. I., Mandurah, M. M., and Saraswat, K. C., J. Electrochem. Soc. 125, 927 (1978).Google Scholar
20. Watanabe, H., Sakai, A., Tatsumi, T., and Niino, T., Solid State Technology, p.29, (July 1992).Google Scholar
21. Steckl, A. J., Xu, J., Mogul, H. C., and Mogren, S., Appl. Phys. Lett. 62, 1982 (1993)Google Scholar