Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-06T22:03:19.363Z Has data issue: false hasContentIssue false

Photoprotection of Chlorophyll-a by Gold Nanoparticles

Published online by Cambridge University Press:  18 April 2013

Laurent Bekale*
Affiliation:
Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Qc, G9A 5H7. Canada
Saïd Barazzouk
Affiliation:
Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Qc, G9A 5H7. Canada
Surat Hotchandani
Affiliation:
Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Qc, G9A 5H7. Canada
*
*To whom correspondence should be addressed. e-mail: Laurent.Bekale@uqtr.ca
Get access

Abstract

The photoprotection of Chlorophyll-a (Chla) is important for its utilization in light harvesting assemblies. Photodegradation effects seen in the Chla solution appear to be inhibited due to the incorporation of Au nanoparticles. The protecting ability of Chla by AuNPs is the result of their efficient binding with Chla at its nitrogen sites even in dark, thus, inhibiting the reaction of reactive oxygen species with Chla, known to cause its degradation during illumination.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spikes, J.D., Photochem. Photobiol. 54, 1079 (1991)CrossRefGoogle Scholar
(a) Zhang, J.P., Zhang, P.Y., Zhang, Z., Chen, G.H., Han, F. and Wei, X.H., Chinese Chemical Letters. 19, 1190 (2008); (b) J. Zhang, P. Zhang, Z. Zhang and X. Wei, J. Phys. Chem. A. 113, 5367 (2009) CrossRefGoogle Scholar
Barazzouk, S., Kamat, P. V. and Hotchandani, S., J. Phys. Chem. B. 109, 716 (2005)CrossRefGoogle Scholar
Brust, M., Walker, M., Bethell, D., Scheffrin, D. J. and Whyman, R., J. Chem. Soc., Chem. Commun. 7, 801 (1994)CrossRefGoogle Scholar
Claes, H., Biochem. Biophys. Res. Commun. 3, 585 (1960)CrossRefGoogle Scholar
Subramanian, V., Wolf, E. and Kamat, P. V., J. Am. Chem. Soc. 126, 4943 (2004)CrossRefGoogle Scholar
Jones, C. E. and Mackay, R. A., J. Phys. Chem. 82, 63 (1978)CrossRefGoogle Scholar
Benesi, H. A. and Hildebrand, J. H., J. Am. Chem. Soc., 1949, 71, 27032707.CrossRefGoogle Scholar
Muralidharan, S. and Hayes, R. G., J. Am. Chem. Soc. 102, 5106 (1980)CrossRefGoogle Scholar
Karweik, D. H. and Winograd, N., Inorg. Chem. 15, 2336 (1976)CrossRefGoogle Scholar
Polzonetti, G., Battocchio, C., Goldoni, A., Larciprete, R., Carravetta, V., Paolesse, R. and Russo, M. V., Chem. Phys. 297, 307 (2004)CrossRefGoogle Scholar
Jack, J. J. and Hercules, D. M., Anal. Chem. 43, 729 (1971)CrossRefGoogle Scholar
Virtanen, S., Soininen, A., Tiainen, V.-M., Besic, D., Puk, M., Kinnari, T., Salo, J., Trebse, R., Trampuz, A. J. and Konttinen, Y. T., Suomen Ortopedia ja Traumatologica. 29, 290 (2006)Google Scholar
Warshawsky, A., Kahana, N., Kampel, V., Rogachev, I., Kautzmann, R. M., Cortina, J. L. and Sampaio, C. H., Macromol. Mater. Eng. 286, 285 (2001)3.0.CO;2-3>CrossRefGoogle Scholar