Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T09:12:02.366Z Has data issue: false hasContentIssue false

Plasma Chemistry Control of Silicon Nitride Deposition

Published online by Cambridge University Press:  26 February 2011

Donald L. Smith
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Andrew S. Alimonda
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Chau-Chen Chen
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Warren Jackson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Barbara Wacker
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Triple-quadrupole mass spectrometry (TQMS) showed disilane and aminosilanes, SiH4-n(NH2)n, to be the principal products of an ammonia-silane discharge. Disilane can be completely eliminated from the plasma by operating at high power and high NH3/SiH4 ratio, which results in almost complete conversion of silane to aminosilanes by reaction with activated ammonia. Films so grown had no detectable Si-H bonding and greatly reduced ESR spin density in the dark. The triaminosilane radical appears to be a key deposition precursor, progressively decomposing and condensing towards Si3N4 with increasing substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Extrel Corp., Pittsburgh, PA.Google Scholar
2. Polysearch Analytical Labs, Stanford, CA.Google Scholar
3. Charles Evans & Associates, Redwood City, CA.Google Scholar
4. Tsu, D. V., Lucovsky, G., and Mantini, M. J., Phys. Rev. B 33, 7069 (1986).Google Scholar
5. Lucovsky, G. and Tsu, D. V., J. Vac. Sci. Technol. A5, 2231 (1987).Google Scholar
6. Wacker, B. and Tsai, C. C., presented at March Meeting of Am. Phys. Soc., Las Vegas, NV (1986).Google Scholar
7. Rochow, E.G., ed., Chemistry of Si (Pergamon Press, 1975), pp. 1374 and 1418.Google Scholar
8. Sinha, A. K. and Smith, T. E., J. Appl. Phys. 49, 2756 (1978).Google Scholar
9. Ling, C. H., Kwok, C. Y., and Prasad, K., J. Vac. Sci. Technol. A5, 1874 (1987).CrossRefGoogle Scholar
10. Osenback, J. W. and Knolle, W. R., J. Appl. Phys. 60, 1408 (1986).CrossRefGoogle Scholar
11. Claassen, W. A. P., Plasma Chem. Plasma Process., 7, 109 (1987).Google Scholar
12. Jousse, D., Kanicki, J., Krick, D. T., and Lenahan, P. M., Appl. Phys. Lett. 52, 445 (1988).Google Scholar
13. Makino, T. and Maeda, M., Jap. J. Appl. Phys. 25, 1300 (1986).Google Scholar
14. Nguyen, S. V., J. Electron. Mater. 16, 275 (1987).Google Scholar
15. Jackson, W. B. and Johnson, N. M. (private communication).Google Scholar
16. Robertson, J. and Powell, M. J., Appl. Phys. Lett. 44, 415 (1984).Google Scholar