Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T09:30:40.340Z Has data issue: false hasContentIssue false

Plasticity in Nanocrystalline and Amorphous Metals: Similarities at the Atomic Scale

Published online by Cambridge University Press:  01 February 2011

Alan C. Lund
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, USA 02139
Christopher A. Schuh
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, USA 02139
Get access

Abstract

For metallic alloys, the amorphous state is often regarded as the limiting structure as grain size is reduced towards zero. One interesting consequence of this limit is that the properties of the finest nanocrystalline metals must begin to resemble those of metallic glasses. In this work we focus upon the nature of the plastic yield mechanisms in these material classes, and seek to identify commonalities and disparities in the nature of plastic yield in glasses and nanocrystals. The discussion is presented with reference to static atomistic simulations of (i) an amorphous binary alloy, and (ii) a nanocrystalline Ni specimen with grain size of 3 nm. We show that both these materials deform by the operation of fine atomic shearing events, and both exhibit asymmetric yielding as a consequence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schuh, C. A., Nieh, T. G. and Iwasaki, H., Acta Mater. 51, 431 (2003).Google Scholar
[2] Weertman, J. R., Farkas, D., Hemker, K., Kung, H., Mayo, M., Mitra, R. and Van Swygenhoven, H., MRS Bull. 24, 44 (1999).Google Scholar
[3] Kumar, K. S., Suresh, S., Chisholm, M. F., Horton, J. A. and Wang, P., Acta Mater. 51, 387 (2003).Google Scholar
[4] Van Swygenhoven, H., Spaczer, M., Caro, A. and Farkas, D., Phys. Rev. B60, 22 (1999).Google Scholar
[5] Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R. and Gleiter, H., Acta Mater. 49, 2713 (2001).Google Scholar
[6] Nieh, T. G. and Wadsworth, J., Scripta Metall. Mater. 25, 955 (1991).Google Scholar
[7] Schiotz, J., Vegge, T., Tolla, F. D. D. and Jacobsen, K. W., Phys. Rev. B60, 11971 (1999).Google Scholar
[8] Hasnaoui, A., Van Swygenhoven, H. and Derlet, P. M., Phys. Rev. B66, 184112 (2002).Google Scholar
[9] Lund, A. C. and Schuh, C. A., Acta Mater. 51, 5399 (2003).Google Scholar
[10] Mishin, Y., Farkas, D., Mehl, M. J. and Papaconstantopoulos, D. A., Phys. Rev. B59, 3393 (1999).Google Scholar
[11] Bulatov, V. V. and Argon, A. S., Modelling and Simulation in Materials Science and Engineering 2, 203 (1994).Google Scholar
[12] Schuh, C. A. and Lund, A. C., Nature Materials 2, 449 (2003).Google Scholar
[13] Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K. and Gleiter, H., Nature Materials 1, 1 (2002).Google Scholar
[14] Van Swygenhoven, H., Derlet, P. M. and Hasnaoui, A., Phys. Rev. B66, 024101 (2002).Google Scholar
[15] Donovan, P. E., Acta Mater. 37, 445 (1989).Google Scholar
[16] Erturk, T. and Argon, A. S., J. Mater. Sci. 22, 1365 (1987).Google Scholar
[17] Lowhaphandu, P., Montgomery, S. L. and Lewandowski, J. J., Scripta Mater. 41, 19 (1999).Google Scholar
[18] Lewandowski, J. J. and Lowhaphandu, P., Phil. Mag. A82, 3427 (2002).Google Scholar
[19] Lu, J. and Ravichandran, G., J. Mater. Res. 18, 2039 (2003).Google Scholar
[20] Vaidyanathan, R., Dao, M., Ravichandran, G. and Suresh, S., Acta Mater. 49, 3781 (2001).Google Scholar
[21] Sanders, P. G., Youngdahl, C. J. and Weertman, J. R., Mater. Sci. Eng. A234–236, 77 (1997).Google Scholar
[22] Legros, M., Elliott, B. R., Rittner, M. N., Weertman, J. R. and Hemker, H. J., Phil. Mag. A80, 1017 (2000).Google Scholar
[23] Lu, L., Wang, L. B., Ding, B. Z. and Lu, K., J. Mater. Res. 15, 270 (2000).Google Scholar
[24] Jia, D., Ramesh, K. T., Ma, E., Lu, L. and Lu, K., Scripta Mater. 24, 613 (2001).Google Scholar
[25] Cheng, S., Spencer, J. A. and Milligan, W. W., Acta Mater. 51, 4505 (2003).Google Scholar
[26] Han, B. Q., Lavernia, E. J. and Mohamed, F. A., Metall. Mater. Trans. 34A, 71 (2003).Google Scholar