Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T23:28:12.359Z Has data issue: false hasContentIssue false

P-N Junction Diodes Fabricated Based on Donor Formation in Plasma Hydrogenated P-Type Czochralski Silicon

Published online by Cambridge University Press:  01 February 2011

Y. L. Huang
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
E. Simoen
Affiliation:
IMEC, B-3001 Leuven, Belgium
R. Job
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
C. Claeys
Affiliation:
IMEC, B-3001 Leuven, Belgium Department of Electrical Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
W. Düngen
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
Y. Ma
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
W. R. Fahrner
Affiliation:
University of Hagen, Department of Electrical Engineering and Information Technology, D-58084 Hagen, Germany
J. Versluys
Affiliation:
Department of Solid-state Science, Ghent University, B-9000 Gent, Belgium
P. Clauws
Affiliation:
Department of Solid-state Science, Ghent University, B-9000 Gent, Belgium
Get access

Abstract

A rather large amount of shallow donors is created in p-type Czochralski silicon (Cz Si) wafers after a hydrogen plasma exposure at ∼270 °C (substrate temperature) and a subsequent annealing in the temperature range of 350-450 °C. This two-step process has been used for the fabrication p-n junction diodes at low temperatures. Current-voltage characteristics show that the breakdown voltages of these diodes are higher than 100 V. The diode leakage is found to be improved after slow ramp annealing at temperatures up to 250 °C. Deep level transient spectroscopy measurements reveal that the oxygen related thermal donor is not the dominant doping species as expected before.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pankove, J. I., Johnson, N. M., Hydrogen in Semiconductors (Academic Press, New York, 1991).Google Scholar
2 Pearton, S. J., Corbett, J. W., Stavola, M., Hydrogen in Crystalline Semiconductors (Springer, Berlin, Heidelberg, New York, 1992).Google Scholar
3 Tokuda, T., Katoh, I., Ohshima, H., and Hattori, T., Semicond. Sci. Technol. 9, 1733 (1994).Google Scholar
4 Wruck, D., Gaworewski, P., Phys. Stat. Sol. (a) 56, 557 (1979).Google Scholar
5 Stein, H. J., Hahn, S. K., Appl. Phys. Lett. 56, 63 (1990).Google Scholar
6 Stein, J., Hahn, S. K., J. Electrochem. Soc. 142, 1242 (1995).Google Scholar
7 Newman, R. C., Tucker, J. H., Brown, A. R., McQuaid, S. A., J. Appl. Phys. 70, 3061 (1991).Google Scholar
8 Murray, R., Brown, A. R., Newman, R. C., Mater. Sci. Eng. B 4, 229 (1989).Google Scholar
9 Estreicher, S. K., Phys. Rev. B 41, 9886 (1990).Google Scholar
10 Newman, R. C., J. Phys.: Condens. Matter 12, R335 (2000).Google Scholar
11 Newman, R. C., Ashwin, M. J., Pritchard, R. E., Tucker, J. H., Phys. Stat. Sol. (b) 210, 519 (1998).Google Scholar
12 Pritchard, R. E., Ashwin, M. J., Tucker, J. H., Newman, R. C., Lightowlers, E. C., Gregorkiewicz, T., Zevenbergen, I. S., Ammerlaan, C. A., Falster, R., Binns, M., Semicond. Sci. Technol. 12, 1404 (1997).Google Scholar
13 Hartung, J., J. Weber, Phys. Rev. B 48, 14161 (1983).Google Scholar
14 Newman, R. C., Tucker, J. H., Semaltianos, N. G., Lightowlers, E. C., Gregorkiewicz, T., Zevenbergen, I. S., Ammerlaan, C. A., Phys. Rev. B 54, 6803 (1996).Google Scholar
15 Ammerlaan, C. A., Zevenbergen, I. S., Marktynov, Yu. V., Gregorkiewicz, T., in: Early Stages of Oxygen Precipitation in Silicon, Ed. Jones, R., NATO ASI Series 3, Vol. 17, Kluwer Acad. Publ. Dordrecht 1996 (pp.6182).Google Scholar
16 Marktynov, Yu. V., Gregorkiewicz, T., Ammerlaan, C. A., Phys. Rev. Lett. 74, 2030 (1995).Google Scholar
17 Weber, J., Bohne, D., in the book of Ref. [15], p. 123.Google Scholar
18 Markevich, V. P., Suezawa, M., Sumino, K., Murin, L. I., J. Appl. Phys. 76, 7347 (1994).Google Scholar
19 Markevich, V. P., Medvedeva, L. F., Murin, L. I., in the book of ref. [15], p.103.Google Scholar
20 Markevich, V. P., Mchedlidze, T., Suezawa, M., Phys. Rev. B 56 R12695 (1997).Google Scholar
21 Markevich, V. P., Mchedlidze, T., Suezawa, M., Murin, L. I., Phys.Stat. Sol. (b) 210, 545 (1998).Google Scholar
22 Newman, R. C., Ashwin, M. J., Pritchard, R. E., Tucker, J. H., Lightowlers, E. C., Gregorkiewicz, T., Zevenbergen, I. S., Ammerlaan, C. A., Falster, R., Binns, M., Mater. Sci. Forum 258/263, 379 (1997).Google Scholar
23 Coutinho, J., Jones, R., Briddon, P. R., Öberg, S., Murin, L. I., Markevich, V. P., Lindström, J. L., Phys. Rev. B 65, 4109 (2001).Google Scholar
24 Ewels, C. P., Jones, R., Oberg, S., Miro, J., Deak, P., Phys. Rev. Lett. 77, 865 (1996).Google Scholar
25 Kaiser, W., Keck, P. H., J. Appl. Phys. 28, 882 (1957).Google Scholar
26 Job, R., Ulyashin, A. G., and Fahrner, W. R., Mater. Sci. & Eng. B 73, 197 (2000).Google Scholar
27 Stein, H. J., Hahn, S. K., J. Electrochem. Soc. 142, 1242 (1995).Google Scholar
28 Kimerling, L. C. and Benton, J. L., Appl. Phys. Lett. 9, 410 (1981).Google Scholar
29 Simoen, E., Claeys, C., Job, R., Ulyashin, A. G., Fahrner, W. R., Tonelli, G., O, De Gryse, Clauws, P., J. Electrochem. Soc. 150, G520 (2003).Google Scholar
30 Huang, Y. L, Ma, Y., Job, R., Scherff, M., Farhner, W.R., Shi, H. G., Xue, D. S., M.–L. David, submitted to J. Electrochem. Soc.Google Scholar