Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T03:05:02.406Z Has data issue: false hasContentIssue false

Point Defect Evolution During Rapid Thermal Annealing of Si+-Implanted GaAs.

Published online by Cambridge University Press:  28 February 2011

M. Levinson
Affiliation:
GTE Laboratories, 40 Sylvan Rd., Waltham, MA 02254.
C. A. Armiento
Affiliation:
GTE Laboratories, 40 Sylvan Rd., Waltham, MA 02254.
S. S. P. Shah
Affiliation:
GTE Laboratories, 40 Sylvan Rd., Waltham, MA 02254.
Get access

Abstract

The point defect reactions in GaAs by which ion implant damage is removed and implanted dopants are activated remain poorly understood. Deep level capacitance transient spectroscopy (DLTS) has been used to study the effects of rapid thermal annealing (RTA) on Si-implant damage generated defects. In low implant dose samples, the results of RTA are similar to those of furnace anneals and also agree well with previous reports of boron-implanted and neutron-irradiated material. In contrast to this, higher dose samples showed much smaller than expected apparent defect concentrations. After RTA, very broad DLTS spectra and relatively little EL2 or EL3 defect formation was observed. The significance of these results with regard to the mechanisms of dopant activation and damage removal are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eisen, F. H., Rad. Eff. 47, 99 (1980).Google Scholar
2. Farley, C. W. and Streetman, B. G., J. Electron. Mater. 13, 401 (1984).Google Scholar
3. Pearton, S. J., Gibson, J. M., Jacobson, D. C., Poate, J. M., Williams, J. S., and Boerma, D. O., Mater. Res. Soc. Symp. Proc. 52, 351 (1986).Google Scholar
4. Sadana, D. K. and Booker, G. R., Rad. Eff. 42, 35 (1979).Google Scholar
5. Hutchinson, P. W., Ball, R. K., Dobson, P. S., and Leigh, P., J. Mater. Sci. Lett. 1, 457 (1982).Google Scholar
6. Martin, G. M., Secordel, P., and Verger, C., J. Appl. Phys. 53, 8706 (1982).Google Scholar
7. Martin, G. M., Esteve, E., Langlade, P., and Makram-Ebeid, S., J. Appl. Phys. 56, 2655 (1984).Google Scholar
8. Samitier, J., Morante, J. R., Giraudet, L., and Gourrier, S., Appl. Phys. Lett. 48, 1138 (1986).Google Scholar
9. Martin, G. M., Mitonneau, A., and Mircea, A., Electron. Lett. 13, 191 (1977).Google Scholar
10. Armiento, C. A. and Prince, F. C., Appl. Phys. Lett. 48, 1623 (1986).Google Scholar
11. Meyer, B. K. and Spaeth, J.-M., J. Phys. C: Sol. State Phys. 18, L99 (1985).Google Scholar
12. Levinson, M., unpublished.Google Scholar
13. Goltzene, A., Meyer, B., Schwab, C., Greenbaum, S. G., Wagner, R. J., and Kennedy, T. A., J. Appl. Phys. 566, 3394 (1984).Google Scholar
14. Yuen, A. T., Long, S. I., and Merz, J. L., Mater. Res. Soc. Symp. Proc. 45, 285 (1985).Google Scholar
15. Choudhury, A. N. M. and Armiento, C. A., Appl. Phys. Lett. 50, 448 (1987).Google Scholar