Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T22:07:02.525Z Has data issue: false hasContentIssue false

Polarization induced 2D hole gas in GaN/AlGaN heterostructures

Published online by Cambridge University Press:  17 March 2011

S. Hackenbuchner
Affiliation:
hackenbuchner@wsi.tum.de
J. A. Majewski
Affiliation:
Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
G. Zandler
Affiliation:
Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
O. Ambacher
Affiliation:
Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
P. Vogl
Affiliation:
Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
Get access

Abstract

The generation of high density 2D hole gases is crucial for further progress in the field of electronic and optoelectronic nitride devices. In this paper, we present results of C-V profiling measurements for N-face GaN/AlGaN heterostructures and systematic theoretical studies of Mg- doped GaN/AlGaN gated heterostructures and superlattices. Our calculations are based on a self- consistent solution of the multiband k.p Schrödinger and Poisson equation and reveal that the hole 2D sheet density is mainly determined by the polarization induced interface charges. For an Aluminium concentration of 30%, the induced hole density in the heterostructure can reach values up to 1.5×1013 cm−2. In the GaN/AlGaN superlattices, the hole sheet density increases with the superlattice period and saturates for a period of 40 nm at a value of 1.5×1013 cm−2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kozodoy, P., Smorchkova, Y. P., Hansen, M., Xing, H., DenBaars, S. P., Mishra, U. K., Saxler, A. W., Perrin, R., and Mitchel, W. C., Appl. Phys. Lett. 75, 2444 (1999).Google Scholar
2. Kozodoy, P., Hansen, M., DenBaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 74, 3681 (1999).Google Scholar
3. Kumakura, K. and Kobayashi, N., Jpn. J. Appl. Phys. 38, L1012 (1999).Google Scholar
4. Shur, M. S., Bykhovski, A. D., and Gaska, R., Solid State Electronics 44, 25 (2000).Google Scholar
5. Hsu, L. and Walukiewicz, W., Appl. Phys. Lett. 74, 2405 (1999).Google Scholar
6. Oberhuber, R., Zandler, G., and Vogl, P., Phys. Rev. B 58, 9941 (1998).Google Scholar
7. Majewski, J. A., Staedele, M., and Vogl, P. in III-V Nitrides, edited by Ponce, F.A., Moustakas, T.D, Akasaki, I., and Monemar, B.A., (Mater. Res. Soc. Proc. 449, Pittsburgh, PA, 1997), pp. 887892.Google Scholar
8. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, 10024 (1997).Google Scholar
9. Ambacher, O., J. Appl. Phys. 31, 2653 (1998).Google Scholar
10. Götz, W., Johnson, N. M., Walker, J., Bour, D. P., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67, 2666 (1995).Google Scholar
11. Stutzmann, M., Ambacher, O., Cros, A., Brandt, M. S., and Angerer, H., Mater. Sci. Eng. B 50, 212 (1997).Google Scholar
12. Ambacher, O., Link, A., Hackenbuchner, S., Stutzmann, M., Dimitrov, R., Murphy, M., Smart, J., Shealy, J. R., Green, B., Schaff, W. J., and Eastman, L. F. in Wide-Bandgap Electronic Devices, edited by Shul, R.J., Ren, F., Murakami, M., and Pletschen, W., (Mater. Res. Soc. Proc. 622, Pittsburgh, PA, 2000), pp. 203208.Google Scholar