Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-24T09:18:50.122Z Has data issue: false hasContentIssue false

Polarized Cathodoluminescence Study of (InP)2/(GaP)2 Bilayer Superlattice Structures

Published online by Cambridge University Press:  15 February 2011

Y. Tang
Affiliation:
Department of Materials Science and Engineering, University of Souathern California, Los Angeles, CA 90089-0241
K. Rammohan
Affiliation:
Department of Materials Science and Engineering, University of Souathern California, Los Angeles, CA 90089-0241
H.T. Lin
Affiliation:
Department of Materials Science and Engineering, University of Souathern California, Los Angeles, CA 90089-0241
D.H. Rich
Affiliation:
Department of Materials Science and Engineering, University of Souathern California, Los Angeles, CA 90089-0241
P. Colter
Affiliation:
Spire Corporation, Bedford, MA 01730
S.M. Vernon
Affiliation:
Spire Corporation, Bedford, MA 01730
Get access

Abstract

Linearly polarized cathodoluminescence (LPCL) imaging and spectroscopy techniques have been employed to examine the optical properties and homogeneity of (InP)2/(GaP)2 bilayer superlattice (BSL) structures which exhibit a lateral composition modulation that leads to the formation of quantum wires. LPCL spectra were measured for various temperature and electron beam excitation densities. The magnitude of the polarization anisotropy and spectral lineshape are found to depend sensitively on the excitation conditions, revealing large nonlinear optical effects in these samples. CL images reveal that defects in the bilayer superlattice structure originate from the GaAs substrate or the initial stages of InGaP growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmitt-Rink, S., Chemla, D. S., Miller, D. A. B., Adv. Phys, 38, 89 (1989).Google Scholar
2. Kulakovskii, V. D., Lach, E., and Forchel, A., Phys. Rev. B 40, 8087 (1989).Google Scholar
3. Hsieh, K. C., Baillargeon, J. N. and Cheng, K. Y., Appl. Phys. Lett. 57, 2244 (1990).Google Scholar
4. Pearah, P. J., Stellini, E. M., Chen, A. C., Moy, A. M., Hsieh, K. C. and Cheng, K. Y., Appl. Phys. Lett. 62, 729 (1993).Google Scholar
5. Cheng, K. Y., Hsieh, K. C. and Baillargeon, J. N., Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
6. Chen, A. C., Moy, A. M., Pearah, P. J., Hsieh, K. C. and Cheng, K. Y., Appl. Phys. Lett. 62, 1359 (1993).Google Scholar
7. Mascarenhas, A., Alonso, R. G., Horner, G. S., Froyen, S., Hsieh, K. C. and Cheng, K. Y., Photovoltaic Advanced Research and Development Project, edited by Noufi, Rommel (AIP Conference Proceedings 268, Denver, CO, 1992) pp. 125130.Google Scholar
8. Tang, Y., Rich, D. H., Lingunis, E. H., and Haegel, N. M., J. Appl. Phys. 76, 3032 (1994).Google Scholar
9. Mascarenhas, A., Kurtz, S., Kibbler, A. and Olson, J. M., Phys. Rev. Lett. 63, 2108 (1989).Google Scholar
10. Ueno, Y., Appl. Phys. Lett. 62, 553 (1993).Google Scholar
11. Weiner, J. S., Chemla, D. S., Miller, D. A. B., Haus, H. A., Gossard, A. C., Wiegmann, W., Burrus, C. A., Appl. Phys. Lett. 47, 664 (1985).Google Scholar
12. Sercel, P. C. and Vahala, K. J., Phys. Rev. B 44, 568 (1991).Google Scholar