Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-10T11:25:33.346Z Has data issue: false hasContentIssue false

Possibility of Quasi-Single-Crystalline Semiconductor Films

Published online by Cambridge University Press:  15 February 2011

T. Noguchi
Affiliation:
Frontier Science Laboratories
S. Usui
Affiliation:
Frontier Science Laboratories
D. P. Gosain
Affiliation:
Frontier Science Laboratories
Y. Ikeda
Affiliation:
Frontier Science LaboratoriesPersonal AV Company, Sony Corporation 2-1-1, Shinsakuragaoka, Hodogaya-ku, Yokohama-shi, 240-0036, Japan, noguchit@src.sony.co.jp
Get access

Abstract

The existence of a novel tetrahedral semiconductor Quasi-Single-Crystalline (QSC) phase is posited. In the QSC semiconductor phase, the films consist of grains with a diamond structure of tetrahedral elements, such as Si, Ge and C, and the grains have a preferred orientation, such as <111> or <100> normal to the film. The lattices perpendicular to the grain boundaries are quasi-matched with neighboring grains. The grains in the films form a regular array, and are distributed more uniformly than in conventional poly-crystalline semiconductor films. Because of the small-angle grain boundaries, a tetrahedral QSC semiconductor such as QSC Si films are expected to have extremely low energy barriers at the grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Katoh, T., IEEE Trans. Elec. Dev. 35, 923 (1988).Google Scholar
[2] Morozumi, S., Oguchi, K., Yazawa, S., Kodaira, T., Ohshima, H. and Manao, T., SID 83 Digest 156(1983).Google Scholar
[3] Noguchi, T., Tajima, K. and Morita, Y., Proc. of Mat. Res. Soc. 146, 35 (1985).Google Scholar
[4] Yamauchi, N., Hajar, J-J. and Reif, R., IEEE Trans. Electron. Devices 38, 55(1991).Google Scholar
[5] Usui, S., Sameshima, T. and Hara, M., Optoelectronics-Devices and Technologies 4, 235 (1989).Google Scholar
[6] Kuriyama, H., Nohda, T., Ishida, S., Kuwahara, T., Noguchi, S., Kiyama, S., Tsuda, S. and Nakano, S., Jpn. J. Appl. Phys. 32, 6190 (1993).Google Scholar
[7] Kung, K. T-Y., Iverson, R. B. and Reif, R., Appl. Phys. Lett., 46, 683 (1985).Google Scholar
[8] Jung, B-H., Youn, C.-J., Hwang, C.-W., Bae, B. S., Sohn, J.-H., Sun, Y. H. and Chen, S., Abstract of AM-LCD 95, 117 (1995).Google Scholar
[9] Kumomi, H. and Yonehara, T., Extended abstracts of IC SSDM 26(1993).Google Scholar
[10] Noguchi, T. and Ikeda, Y., Proc. of Sony Research Forum 200(1992).Google Scholar
[11] Ikeda, Y. and Noguchi, T., Proc. of 44th. Symp. on Semiconductors and Integrated Circuits Tech., 187(1993).Google Scholar
[12] Kim, J. H. and Lee, J. Y., Thin Solid Films 292, 313 (1997).Google Scholar
[13] Asano, T., Aoto, T. and Okada, Y., Jpn. J. Appl. Phys. 36, 1415 (1997).Google Scholar
[14] Jang, J., Oh, J. Young, Kim, S. K., Choi, Y. J., Yoon, S. Y. and Kim, C. O., Nature, 395, 481 (1998).Google Scholar
[15] Crowder, M. A., Carey, P. G., Smith, P. M., Sposili, R. S., Cho, H. S. and Im, J. S., IEEE Ele. Dev. Lett. 19, 306 (1998).Google Scholar
[16] Thompson, C. V. and Smith, H. I., J. Appl. Phys., 58, 763 (1985).Google Scholar
[17] Geis, M. W., Smith, H. I., Tsauer, B-Y., Fan, J. C. C., Silversmith, D. J. and Mountain, R. W., J. Electrochem. Soc., 2812(1982).Google Scholar
[18] Noguchi, T., Kanaya, Y., Kunii, M., Ikeda, Y. and Usui, S., Japanese Patent Application No. J10-041234, Opened in (1998).Google Scholar