Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T11:22:05.931Z Has data issue: false hasContentIssue false

Preparation And Sintering Studies Of Nanometer-Sized Polycrystalline ZrO2

Published online by Cambridge University Press:  25 February 2011

R. Würschum
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwald-ring 57/VI, 7000 Stuttgart 80, Germany
G. Soyez
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwald-ring 57/VI, 7000 Stuttgart 80, Germany
H.-E. Schaefer
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwald-ring 57/VI, 7000 Stuttgart 80, Germany
Get access

Abstract

The present paper reports on the characterization and on sintering studies of nanometer-sized polycrystalline ZrO2 prepared by the technique of crystallite condensation, oxidation, and in-situ compaction. The annealing induced growth of crystallites as well as a transformation from the tetragonal to the monoclinic phase were observed. A rapid increase of the mass density and of the microhardness during annealing up to 1000 °C indicates attractive sintering characteristics. By means of positron lifetime spectroscopy the development of the pattern of structural free volumes during sintering was studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., Prog. Mat. Science 33, 223 (1989)Google Scholar
2. Siegel, R.W., Ramasamy, S., Hahn, H., Li, Zongquan, Lu, Ting, Gronsky, R., J. Mater. Res. 3, 1367 (1988)Google Scholar
3. Hahn, H., Logas, J., Averback, R.S., J. Mater. Res. 5, 609 (1990)Google Scholar
4. Karch, J., Birringer, R., Gleiter, H., Nature 330, 556 (1987)Google Scholar
5. Gravie, R.C., J. Phys. Chem. 69, 1238 (1965)CrossRefGoogle Scholar
6. Lange, F.F., J. Mat. Science 17, 225 (1982)Google Scholar
7. Hahn, H. and Averback, R.S., J. Appl. Phys. 67, 1113 (1990)Google Scholar
8. Schaefer, H.-E., Wiirschum, R., Birringer, R., Gleiter, H., Phys. Rev. B 38, 9545 (1988)Google Scholar
9. Schaefer, H.-E., Eckert, W., Stritzke, O., Würschum, R., Templ, W., in Positron Annihilation, edited by Dorikens-Vanpraet, L., Dorikens, M., Segers, D. (World Scientific Publ., Singapur, 1989) p. 79 Google Scholar
10. Würschum, R., Greiner, W., Soyez, G., Schaefer, H.-E., Mat. Sci. Forum, in pressGoogle Scholar
11. Soyez, G., Diplomarbeit, Universität Stuttgart, 1991 Google Scholar
12. Carstanjen, H.-D., Decker, W., Diehl, J., Enders, T., Emrick, R.M., Fohl, A., Friedland, E., Plachke, D., Stoll, H., Nucl. Instr. Meth. Phys. Res. B 51 (1990) 152 Google Scholar
13. Garvie, R.C., J. Phys. Chem. 82, 218 (1978)Google Scholar
14. El-Shanshoury, A., Rudenko, V.A., Ibrahim, I.A., J. Amer. Cer. Soc. 53, 264 (1970),Google Scholar
15. Mazdiyasni, K.S., Lynch, C.T., Smith, J.S., J. Amer. Cer. Soc. 49, 286 (1966)Google Scholar
16. Heuer, A.H. and Ruble, M. in Science and Technology of Zirconia II (Advances in Ceramics, Vol. 12), edited by Clausen, N., Rühle, M., Heuer, A.H. (American Cer. Soc, Columbus, Ohio, 1984), p. 1 Google Scholar
17. Baumard, J.F. and Abelard, P., in [16], p. 555Google Scholar
18. Rhodes, W.H. and Carter, R.E., J. Amer. Cer. Soc. 49, 244 (1966)Google Scholar
19. Roosen, A. and Hausner, H., in [16], p. 714Google Scholar
20. Theunissen, G., Winnubst, A., Groot Zevert, W., Burggraaf, A., in Zirconia '88 (Advances in Zirconia Science and Technology), edited by Meriani, S. and Palmonari, C. (Elsevier, London, 1989) p. 325 Google Scholar
21. Rhodes, W.H., J. Amer. Cer. Soc. 64, 19 (1981)CrossRefGoogle Scholar
22. Hautojärvi, P., Positrons in Solids (Springer, Berlin, 1979)Google Scholar
23. Schaefer, H.-E. and Forster, M., Mat. Science Engin. A 109, 161 (1989)Google Scholar