Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-22T04:37:49.650Z Has data issue: false hasContentIssue false

Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite

Published online by Cambridge University Press:  15 March 2011

Elena Vasiliu
Affiliation:
Department of Chemical and Materials Engineering, University of Dayton, Dayton OH 45469
Chyi-Shan Wang
Affiliation:
Department of Chemical and Materials Engineering, University of Dayton, Dayton OH 45469 University of Dayton Research Institute, Dayton OH 45469
Richard A. Vaia
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433
Get access

Abstract

Transparent polymeric material with enhanced thermal, mechanical and barrier properties are of special interest for advanced structural, optical and photonic applications. The present paper reports a novel solution processing scheme for fabricating optically transparent polymer nanocomposites involving organophilic layered silicates. It is shown that the nanocomposite material prepared with PMMA and an organically modified montmorrilonite maintains the excellent optical transparency of PMMA. Small-angle x-ray scattering of the polymer nanocomposite material does not show any Bragg's reflection of the organophilic layered silicate. The optical transparency of the nanocomposite material is attributed to a high degree of exfoliation of the montmorrilonite in the polymer matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olphen, H. V. An introduction to clay colloids chemistry; Wiley: New York, 1977.Google Scholar
2. Carotenuto, G.; Nicolais, L.; Kuang, X. Appl. Composite Matls. 1996, 3, 103116.Google Scholar
3. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl. Clay Sci. 1999, 15, 1129.Google Scholar
4. Gao, Z.; Xie, W.; Hwu, J. M.; Wells, L.; Pan, W.-P. J. Thermal Anal. Calorim. 2001, 64, 467– 475.Google Scholar
5. Lemmon, J. P.; Wu, J.; Oriakhi, C.; Lerner, M., M. Electrochimica Acta 1995, 40, 22452249.Google Scholar
6. Alexandre, M.; Beyer, G.; Henrist, C.; Cloots, R.; Rulmont, A.; Jérôme, R.; Dubois, P. Macromol. Rapid Commun. 2001, 22, 643646.Google Scholar
7. Vaia, R. A.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Chem. Mater. 1996, 8, 26282635.Google Scholar
8. Messersmith, P. B.; Giannelis, E. P. Chem. Mater. 1994, 6, 17191725.Google Scholar
9. Lincoln, D. M.; Vaia, R. A.; Wang, Z.-G.; Hsiao, B. S. Polymer 2001, 42, 16211631.Google Scholar
10. Chen, G.; Ma, Y.; Qi, Z. Scripta Materialia 2001, 44, 125128.Google Scholar
11. Luckham, P. F.; Rossi, S. Adv. Colloid Interface Sci. 1999, 82, 4392.Google Scholar