Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T13:02:14.667Z Has data issue: false hasContentIssue false

Preparation of Pd /α–Al2O3 and Pd-Ag/α–Al2O3 Membranes by Electroless Plating and Permeation Measurements

Published online by Cambridge University Press:  31 January 2012

L. Ortiz-Martínez
Affiliation:
Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, México D.F.E-mail: et.ort84@hotmail.com
M. Torres-Rodríguez
Affiliation:
Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, México D.F.E-mail: et.ort84@hotmail.com
M. Gutiérrez-Arzaluz
Affiliation:
Área de Química Aplicada, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, México D.F.E-mail: et.ort84@hotmail.com
Get access

Abstract

In this work, the synthesis of dense Pd/α–Al2O3 and Pd-Ag/α–Al2O3 ceramic composite membranes was done through the sequential electroless plating technique of Pd and Ag. The precursors are solutions of PdCl2 and AgNO3 and N2H4 salts, as reducing agent. The membranes were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). The permeation tests of H2 and N2 was carried out at 20 psi of pressure and at 25°C, resulted πH2=5.2x10-9 mol H2/m2·s·Pa and πN2=8.2x10-10 mol N2/m2·s·Pa.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Profeti, L.P.R., Dias, J.A.C., Assaf, J.M., Assaf, E.M., J. Power Sources, 190, 525533 (2009).Google Scholar
2. Chang, Y.Y., Dong, W.L., Sang, J.P., Kwan, Y.L., Kew, H.L., Int. J. Hydrogen Energy, 34, 29472954 (2009).Google Scholar
3. Hoffman, P., Applied Energy, 47, 183199 (1994).Google Scholar
4. Hsieh, H.P., Inorganic membranes for separation and reaction, 2nd ed. (Elsevier Science Publishers, Netherlands, 1996).Google Scholar
5. Tosti, S., Basile, A., Borgognoni, F., Capaldo, V., Cordiner, S., Di Cavec, S., Gallucci, F., Rizzello, C., Santucci, A., Traversa, E., J. Membrane Sci., 308, 250257 (2008).Google Scholar
6. Keuler, J. N.. Ing, M.. Thesis, University of Stellenbosch, 1997.Google Scholar
7. Pacheco, D.A., Llosa, M.A., Niwa, S., Wakui, Y., Mizukami, F., Namba, T., Suzuki, T.M., J. Membr. Sci., 247, 2127 (2005).Google Scholar
8. Bosko, M.L., Miller, J.B., Lombardo, E.A., Gellmen, A.J., Cornaglia, L.M., J. Membr. Sci., 369, 267276 (2011).Google Scholar
9. Chen, W., Hu, X., Wang, R., Huang, Y.. Separation and Purification Technology, 72, 9297 (2010).Google Scholar
10. Hu, X., Yu, J., Song, J., Wang, X., Huang, Y.. International Journal of Hydrogen Energy, 36, 1579415802 (2011).Google Scholar
11. Li, A., Liang, W., Hughes, R.. Catalysis Today, 56, 4551 (2000).Google Scholar