Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T05:48:21.092Z Has data issue: false hasContentIssue false

Probing Luminescence from Conical Bubble Collapse

Published online by Cambridge University Press:  01 February 2011

M. Navarrete
Affiliation:
Instituto de Ingeniería
C. Sánchez
Affiliation:
Lab. de Fotofísica, CCADET
F. A. Godínez
Affiliation:
Instituto de Ingeniería
R. Valdés
Affiliation:
Instituto de Ingeniería
E. Mejía
Affiliation:
Lab. de Fotónica de Microondas, CCADET; Universidad Nacional Autónoma de México, Av. Universidad 3000, C. P. 04510, D. F. México, mnm@pumas.iingen.unam.mx
M. Villagrán
Affiliation:
Lab. de Fotofísica, CCADET
Get access

Abstract

A summary of experimental findings on the luminescence from conical bubble collapse, CBL is presented. Spatial, temporal, and spectral features of luminescence were investigated. In the experimental runs, two inert gases (Ar, Xe) and 1,2-Propanediol, PD, as work liquid were used. Single and multiple light emission events were recorded. Results show that there is a spectral evolution inside each pulse and through the whole experimental sequence. The average spectra consist of a broad continuum background, on which line emissions of OH°, CN, Na+, K+, and Swan lines are superimposed. An increase in continuum intensity from 300 to 860 nm was observed. The molecular and atomic lines as well as the continuum emission arise from different chemical pathways that take place during the bubble compression. Pathways come from the degradation of the liquid due to the repetition of the compression process, resulting in changes of the thermo-chemical conditions inside the cavity, such that each collapse was different. This becomes evident, by using low gas pressures, in which the luminescence was spatially and temporally non uniform. On the other hand if Xe instead of Ar is used the intensity of the luminescence increased one order of magnitude. These findings indicate that several components are presents in the bubble, besides the residual air and inert gas, vapor and liquid droplets, and within the latest water vapor, inert gas and alkali solutions are dissolved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barber, B. P., Hiller, R. A., Lofstedt, R., Putterman, S. J., and Weninger, K. R., Phys. Rep. 281, 65 (1997).Google Scholar
2. Ronald Young, F., in Sonoluminescence (CRC Press, 2004) pp. 67139.Google Scholar
3. Walton, J. and Reynolds, G. T., Adv. Phys. 33, 595 (1984).Google Scholar
4. Eddingsaas, N. C., Suslick, K. S., Phys Rev. Lett. 99, 2330, (2007).Google Scholar
5. Jarman, P. D. and Taylor, J. K., J. Appl. Phys. 16, 675 (1965).Google Scholar
6. Chen, Q. D., Wan, L., Chinese Phys. 13, 564 (2004).Google Scholar
7. Su, C. K., Camara, C., Kappus, B. and Putterman, S. J., Phys. Fluids 15, 1457 (2003).Google Scholar
8. Kosky, P. G., Chem. Eng. Sci. 23, 695 (1968).Google Scholar
9. Hawtin, P., Hendwood, G. A. and Huber, R. A., Chem. Eng. Sci. 25, 1197 (1970).Google Scholar
10. Leighton, T. G., Cox, B. and Phelps, A. D., J. Acoust. Soc. Am. 107, 130 (2000).Google Scholar
11. Chen, Q. D., Fu, L. M., Ai, X. C., Zhan, J. P. and Wang, L., Phy. Rev. E 70, 047301 (2004).Google Scholar
12. Chen, Q. D., Fu, L. M., Ai, X. C., Zhan, J. P. and Wang, L., Chinese Phys. 14, 826 (2005).Google Scholar
13. Jing, H., He, S. J., Fang, W. and Min, S. J.. J. Phys. B: At. Mol. Opt. Phys. 41, 195402 (2008).Google Scholar
14. S-J, He, X-C, Ai and L-F, Dong et al, Chin. Phys. 15, 1615 (2006).Google Scholar
15. Ohl, C. D., Lindau, O. and Lauterborn, W., Phys Rev. Lett. 80, 393 (1998).Google Scholar
16. Harvey, E. N., J. Am. Chem. Soc. 61, 2392 (1939).Google Scholar
17. Benkovskii, V. G., Golubnichii, P. I. and Olzoev, K. F., Sov. Phys. Acoust. 20, 74 (1974).Google Scholar
18. Barber, P., Putterman, S. J., Phys. Rev. Lett. 69, 3839 (1992).Google Scholar
19. Suslick, K. S. and Flannigan, D. J., Ann. Rev. Phys. Chem. 59, 659 (2008).Google Scholar
20. Ohl, C. D., Physics of Fluids, 14, 2700 (2002).Google Scholar
21. Bernstein, L. S., Zakin, M. R., Flint, E. B. and Suslick, K. S., J. Phys. Chem. 100, 6612 (1996).Google Scholar
22. He, S. J., Jing, H., Li, X. C., Li, Q., Dong, L. F., and Wang, L., J. Phys. B: At. Mol. Opt. Phys. 40, 3983 (2007).Google Scholar