Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T13:55:01.028Z Has data issue: false hasContentIssue false

Production and Characterization of Metal-Encapsulated Fullerenes

Published online by Cambridge University Press:  25 February 2011

Robert D. Johnson
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Costantino S. Yannoni
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Mark Hoinkis
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Mattanjah de Vries
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Jesse R. Salem
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Mark S. Crowder
Affiliation:
IBM Adstar, 5600 Cottle Rd., San Jose, CA 95193
Donald S. Bethune
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Get access

Abstract

We report here the arc-production and spectroscopic characterization of fullerene-encapsulated metal atoms and metal-atom clusters. In particular, both solution and solid-stateelectron paramagnetic resonance (EPR) spectra of LaC82', YC82', SCC82' and Sc3 C82 have been obtained. Additional species containing rareearth atoms and clusters have been produced. The results suggest, for example, that the three scandium atoms in Sc3C82 form a molecule In the shape of an equilateral triangle — as was previously suggested for Sc3 molecules Isolated In a cryogenic rare-gas matrix. The spectraof the MC82 species (M =La, Y, Sc) exhibit small hyperfine couplings and g-values close to 2, suggesting that they can be described as a +3 metal cations within – 3 fullerene radical anion cages. Sc2C2n species — the most abundant metailofuilerenes In the scandlum-fullerene mass spectrum — are EPR-silent, even though Sc2 is EPR-actlve In a rare-gas matrix at 4.2K. A broader Implication of this work Is that production of macroscopic quantities of metal-containing fullerenes may make possible the fabrication of exotic new structures with regular arrays of metal atoms or clusters Isolated in fullerene molecules, resulting in new typesof host/guest nanostructured materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krätschmer, W., Fostiropoulos, K., and Huffman, D. R., Chem. Phys. Lett. 170, (1990) 167170.Google Scholar
2. Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature 347, (1990) 354358.Google Scholar
3. Heath, J. R., O'Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Kroto, H. W., Zhang, Q., Tittel, F. K., and Smalley, R. E., J. Am. Chem. Soc. 107, (1985) 7779.CrossRefGoogle Scholar
4. Weiss, F.D., Elkind, J.L., O'Brien, S.C., Curl, R.F., and Smalley, R.E., J. Am. Chem. Soc. 110, (1988) 4464.CrossRefGoogle Scholar
5. Cox, D. M., Reichmann, K. C., and Kaldor, A., J. Chem. Phys. 88, (1988) 15881597.Google Scholar
6. Haufler, R.E., Conceicao, J., Chibante, L.P.F., Chai, Y., Byrne, N.E., Flanagan, S., Haley, M.M., O'Brien, S.C., Pan, C., Xiao, Z., Billups, W.E., Ciufolini, M.A., Hauge, R.H., Margrave, J.L., Wilson, L.J., Curl, R.F., and Smalley, R.E., J. Phys. Chem. 94, (1990) 8634.Google Scholar
7. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, (1985) 162163.Google Scholar
8. Chai, Y., Guo, T., Jin, C., Haufler, R.E., L.P.F. Chibante, Fure, J., Wang, L., Alford, J.M., and Smalley, R.E., J. Phys. Chem. 95, (1991) 75647568.Google Scholar
9. Johnson, R.D., Vries, M.S. de, Salem, J., Bethune, D.S. and Yannoni, C.S., Nature 355, (1992) 239.Google Scholar
10. Alvarez, M.M., Gillan, E.G., Holczer, K., Kaner, R.B., Min, K.S., and Whetten, R.L., J. Phys. Chem. 95, (1991) 1056110563.Google Scholar
11. Weaver, J.H., Chai, Y., Kroll, G.H., Jin, C., Ohno, T.R., Haufler, R.E., Guo, T., Alford, J.M., Conceicao, J., Chibante, L.P.F., Jain, A., Palmer, G., and Smalley, R.E., Chem. Phys. Lett. 190, (1992) 460464.Google Scholar
12. Shinohara, H., Sato, H., Saito, Y., Ohkohchi, M. and Ando, Y., J. Phys. Chem. 96, (1992) 35713573.Google Scholar
13. Yannoni, C. S., Hoinkis, M., Vries, M.S. de, Bethune, D.S., Salem, J. R., Crowder, M.S., and Johnson, R.D., Science (in press).Google Scholar
14. Shinohara, H., Sato, H., Ohkohchi, M., Ando, Y., Kodama, T., Shida, T., Kato, T., and Saito, Y., Nature (in press).Google Scholar
15. Pradeep, T., Kulkarni, G.U., Kannan, K.R., Row, T.N. Guru and Rao, C.N.R., JACS 114, (1992) 2272–73.Google Scholar
16. Meijer, G. and Bethune, D. S., J. Chem. Phys. 93, (1990) 7800.Google Scholar
17. Pilla, O. and Bill, H., J. Phys. C 17, (1984) 32633267.Google Scholar
18. Rosen, A. and Waestberg, B., Z. Phys. D: At. Mol. and Clusters 12, (1989) 387390.Google Scholar
19. Yannoni, C.S., Wendt, H.R., Vries, M.S. de, Siemens, R.L., Salem, J.R., Lyerla, J., Johnson, R.D., Hoinkis, M., Crowder, M.S., Brown, C.A., and Bethune, D.S., Synthetic Metals (in press).Google Scholar
20. Krusic, P.J., Wasserman, E., Parkinson, B.A., Malone, B., and Holler, E.R. Jr., JACS 113, (1991) 62746275.Google Scholar
21. Allemand, P.-M., Srdanov, G., Koch, A., Khumani, K., Wudl, F., Rubin, Y., Diederich, F., Alvarez, M.M., Anz, S.J., and Whetten, R.L., JACS 113, (1991) 27802781.Google Scholar
22. Penicaud, A., Hsu, J., Reed, C.A., Koch, A., Khemani, K.C., Allemand, P.-M., and Wudl, F., JACS 113, (1991) 66986700.Google Scholar
23. Kukolich, S.G. and Huffman, D.R., Chem. Phys. Lett. 182, (1991) 263265.Google Scholar
24. Knight, L. B. Jr., Woodward, R. W., Zee, R. J. Van and Weltner, W. Jr., J. Chem. Phys. 79, (1983) 58205827.Google Scholar
25. Weltner, W. Jr., Magnetic Atoms and Molecules, (Van Nostrand Reinhold, New York, 1983).Google Scholar
26. Stucky, Galen D. and Dougall, James E. Mac, Science 247, (1990) 669678.Google Scholar