Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-16T03:33:08.326Z Has data issue: false hasContentIssue false

Pt Reactions with Ge, SiGe, and Si/SiGe Superlattices

Published online by Cambridge University Press:  25 February 2011

P. J. Wang
Affiliation:
IBM Semiconductor R&D Center, Hopewell Junction, NY 12533
Chin-An Chang
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.
B. S. Meyerson
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.
J. O. Chu
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.
M. J. Tejwani
Affiliation:
IBM Semiconductor R&D Center, Hopewell Junction, NY 12533
Get access

Abstract

Reactions between Pt and SiGe alloy have been studied by comparing several structures: Pt/Ge, Pt/SiGe, and Pt/Si-SiGe superlattices. The Ge, SiGe layers and Si-SiGe superlattices were grown on (100) Si substrates by the ultrahigh vacuum/chemical vapor deposition technique. Pt-Ge reactions start around 200 °C, forming PtzGe. This is followed by the formation of PtGe around 300 °C. The Pt-Ge reactions are thus similar to those of Pt-Si. The reactions between Pt and SiGe, however, involve a preferential Pt-Si reaction. At 200 °C, for example, while Pt2Ge is normally seen from the Pt/Ge system, only PtzSi is detected from both x-ray diffraction and Rutherford backscattering measurements. At higher temperatures, both the PtGe and PtSi phases form. This preferential Pt-Si reaction is observed in both Pt/SiGe and Pt/Si-SiGe superlattice structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Bean, J. C., J. Cryst. Growth 81, 411 (1987).Google Scholar
2. Meyerson, B. S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
3. People, R., Bean, J. C., Lang, D. V., Sergent, A. M., Stormer, H. L., Wecht, K. W., Lynch, R. T., and Baldwin, K., Appl. Phys. Lett. 45, 1231 (1984).CrossRefGoogle Scholar
4. Pearsall, T. P., Vandenberg, J. M., Hull, R., and Bonar, J. M., Phys. Rev. Lett. 63, 2104 (1989).Google Scholar
5. Arienzo, M., Comfort, J. H., Crabbé, E. F., Harame, D. L., Iyer, S. S., Meyerson, B. S., Patton, G. L., Stork, J. M. C., and Sunin, Y. C. Silicon Molecular Beam Epitaxy, edited by Bean, J. C., Iyer, S. S., and Wang, K. L. (Mater. Res. Soc. Proc. vol-220, Pittsburg, PA 1991) PP. 421431.Google Scholar
6. Houghton, D. C., Noël, J. -P., and Rowell, N. L. in Silicon Molecular Beam Epitaxy, edited by Bean, J. C., Iyer, S. S., and Wang, K. L. (Mater. Res. Soc. Proc. vol. 220, Pittsburg, PA 1991) PP. 299320.Google Scholar
7. Ottaviani, G., J. Vac. Sci. Technol., 16(5), 1112 (1979).Google Scholar
8. Murarka, S. P., J. Vac. Sci. Technol., B2(4), 693, (1984).Google Scholar
9. Marshall, E. D., Wu, C. S., Pai, C. S., Scott, D. M., and Lau, S. S., Mater. Res. Soc. Proc. vol. 7, 161 (1985).Google Scholar
10. Tu, K. N., J. Vac. Sci. Technol. 19(3), 766 (1981).Google Scholar
11. Hong, Q. Z. and Mayer, J. W., J. Appl. Phys. 66(2), 611 (1989).Google Scholar
12. Wang, P. J., Goorsky, M. S., Meyerson, B. S., LeGoues, F. K., and Tejwani, M. J., Appl. Phys. Lett. 59, 814 (1991).CrossRefGoogle Scholar