Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T18:25:44.723Z Has data issue: false hasContentIssue false

P-type Doping of Organic Charge Transport Materials with Tungsten Oxide

Published online by Cambridge University Press:  20 August 2015

X. M. Li
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
R. Y. Yang
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
X. A. Cao
Affiliation:
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
Get access

Abstract

The effects of WO3 doping in 4,4’-bis-9-carbozyl biphenyl (CBP) were studied through detailed electrical device characterization. A series of hole-only devices have been fabricated, where the doping level was varied from 10-40mol% and the doped CBP thickness was varied from 5-40 nm. It was found that, to achieve effective doping for improved hole injection and transport, the doping level should be greater than 20mol% and the doped layer should be at least 10 nm thick. It was also found that an energy barrier exists at the doped and undoped CBP interface, resulting in an additional voltage drop. This finding was explained by a large downward shift of the Fermi level in WO3-doped CBP, which causes band bending and depletion at the interface. Finally, simplified green phosphorescent organic light-emitting diodes (OLEDs) with CBP as the hole transport and host material were fabricated. With a WO3-doped hole transport layer, the OLEDs attained brightness above 105 cd/m2 at 20 mA/cm2, and exhibited an improved reliability under constant-current stressing as compared to undoped OLEDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meerheim, R., Lussem, B., Leo, K., Proc. IEEE 97 (2009) 1606.10.1109/JPROC.2009.2022418CrossRefGoogle Scholar
Zhou, X., Blochwitz, J., Pfeiffer, M., Nollau, A., Fritz, T., and Leo, K., Adv. Funct. Mater. 11 (2001) 310.3.0.CO;2-D>CrossRefGoogle Scholar
Kröger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., Kahn, A., Org. Electron. 10 (2009) 932.CrossRefGoogle Scholar
Lee, J. H., Kim, H. M., Kim, K. B., Kim, J. J., Org. Electron. 12 (2011) 950.10.1016/j.orgel.2011.03.008CrossRefGoogle Scholar
Glaser, T., Beck, S., Lunkenheimer, B., Donhauser, D., Köhn, A., Kröger, M., Pucci, A., Org. Electron. 14 (2013) 575.CrossRefGoogle Scholar
Qiao, X., Chen, J., Li, X., and Ma, D., J. Appl. Phys. 107 (2010) 104505.10.1063/1.3428374CrossRefGoogle Scholar
Shin, W., Lee, J., Kim, J. C., Yoon, T. H., Kim, T. S., Song, O. K., Org. Electron. 9 (2008) 333.CrossRefGoogle Scholar
Hamwi, S., Meyer, J., Winkler, T., Riedl, T., and Kowalsky, W., Appl. Phys. Lett. 94 (2009) 253307.CrossRefGoogle Scholar
Yun, C., Xie, G., Murawski, C., Lee, J., Ventsch, F., Leo, K., Gather, M. C., Org. Electron. 14 (2013) 1695.10.1016/j.orgel.2013.04.018CrossRefGoogle Scholar
Wang, F., Qiao, X., Xiong, T., and Ma, D., J. Appl. Phys. 105 (2009) 084518.CrossRefGoogle Scholar
Meyer, J., Hamwi, S., Schmale, S., Winkler, T., Johannes, H. H., Riedl, T. and Kowalsky, W., J. Mater. Chem. (2009) 702.10.1039/b819485hCrossRefGoogle Scholar
Kim, S. Y., Jeon, W. S., Park, T. J., Pode, R., Jang, J., and Kwon, J. H., Appl. Phys. Lett. 94 (2009) 133303.CrossRefGoogle Scholar
Hsieh, M., Ho, M., Lin, K., Chen, J., Chen, T., and Chen, C., Appl. Phys. Lett. 95 (2009)033501.CrossRefGoogle Scholar
Wen, S., Lee, M., and Chen, C., IEEE J. Display Technol. 1(2005) 90.CrossRefGoogle Scholar
Jeon, J., Park, T., and Jeon, W., Chem. Lett. 36(2007) 1156.CrossRefGoogle Scholar
Acharya, R. and Cao, X. A., IEEE J. Display Technol. 9 (2013) 942.CrossRefGoogle Scholar
Pfeiffer, M., Beyer, A., Fritz, T., and Leo, K., Appl. Phys. 73(1998) 3202.Google Scholar
Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T. and Kahn, A., Adv. Mater. 24 (2012) 5408.CrossRefGoogle Scholar
Cao, X. A., Zhang, Y. Q., Appl. Phys. Lett. 100 (2012)183304.CrossRefGoogle Scholar
Zhang, Y. Q., Acharya, R., and Cao, X. A., J. Appl. Phys. 112 (2012) 013103.CrossRefGoogle Scholar
Li, X. M. and Cao, X. A., Org. Electron. 14 (2013) 2523.CrossRefGoogle Scholar