Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-12T22:37:11.206Z Has data issue: false hasContentIssue false

Quasi-Ballistic Stable Electron Emission from Porous Silicon Cold Cathodes

Published online by Cambridge University Press:  10 February 2011

X. Sheng
Affiliation:
Division of Electronic and Information Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan
N. Koshida
Affiliation:
Division of Electronic and Information Engineering, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan
Get access

Abstract

Based on the previously-reported porosity multilayer technique, cold electron emission properties of porous silicon (PS) electroluminescent diodes with a structure of Au/PS/n-type Si are further improved by introducing a graded-band multilayer structure. It is shown that electrons are quasiballisticly emitted from PS diodes owing to a significantly reduced electron scattering in PS layer. As a result, the emission current shows a fluctuation-free behavior. These observations are very important for both understanding the electron transport in PS and developing high performance electron emitters in application to vacuum microelectronic technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koshida, N., Ozaki, T., Sheng, X., and Koyama, H., Jpn. J. Appl. Phys., Part 2 34, L705 (1995)Google Scholar
2 Sheng, X., Ozaki, T., Koyama, H., and Koshida, N., in Proceedings of the International Symposium on Advanced Luminescent Materials, Chicago, 1995, edited by Lockwood, D. J., Fauchet, P. M., Koshida, N., and Brueck, S. R. J. (Electrochemical Society, Pennington, NJ, 1996), pp. 8793.Google Scholar
3 Sheng, X., Koyama, H., Koshida, N., Yoshikawa, T., Yamaguchi, M., and Ogasawara, K., Thin Solid Films 297, 314 (1997).Google Scholar
4 Sheng, X., Koyama, H., Koshida, N., Iwasaki, S., Negishi, N., Chuman, T., Yoshikawa, T., and Ogasawara, K., J. Vac. Sci. Technol. B 15, 1661 (1997).Google Scholar
5 Sheng, X., Koyama, H., and Koshida, N., J. Vac. Sci. Technol. B 16(2) (1998) (in press).Google Scholar
6 Halimaoui, A., in Porous Silicon Science and Technology, edited by Vial, J. C. and Derrien, J., (Springer-Verlag, NY, 1995), pp. 3942.Google Scholar
7 Herino, R., in Properties of Porous Silicon, edited by Canham, L., (INSPEC, IEE, London, UK, 1997), pp. 8996.Google Scholar
8 Suda, Y., Ban, T., Koizumi, T., Koyama, H., Tezuka, Y, Shin, S., and Koshida, N., Jpn. J. AppI. Phys. 33, 581 (1994).Google Scholar
9 Onn, D. G., Smejtek, P., and M, Silver, Appl, J.. Phys. 45, 119 (1971).Google Scholar
10 Klfma, O., Hlinomaz, P., Hospodkovi, A., Oswald, J. and Kocka, J., J. Non-Crystalline Solids 164–166, 961 (1993).Google Scholar
11 Fitting, H. J., Hingst, Th., Schreiber, E., and Geib, E., J. Vac. Sci. Technol. B 14, 2087 (1996).Google Scholar
12 Lerner, P., Culter, P. H., and Miskovsky, N., J. Vac. Sci. Technol. B 15, 398 (1997).Google Scholar