Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T01:10:29.777Z Has data issue: false hasContentIssue false

Quasicrystalline Catalyst for Steam-Reforming of Methanol

Published online by Cambridge University Press:  17 March 2011

A.P. Tsai
Affiliation:
National Research Institute for Metals, Tsukuba 305-0047 and CREST JST, Japan
M. Yoshimura
Affiliation:
Corporate Research Laboratory, Mitsubishi Gas Chemical Co, 22 Wadai, Tsukuba, Ibaraki 300-4247, Japan
Get access

Abstract

Steam reforming of methanol (CH3OH + H2O -> 3H2 + CO2) has been performed on a number of Al-Cu-based stable quasicrystals and related alloys. Alloys leached in NaOH aqueous solution exhibit the highest activity for steam-reforming of methanol. Among the alloys, AlCuFe quasicrystal, after leaching treatment, reveals excellent activity. The production rate of H2 reaches 235 l/kgmin at 573K for steam reforming of methanol. The activity is due to Cu nanoparticles at the surfaces of quasicrystalline grains which are generated by leaching treatment. The quasicrystals have two advantages: one is their brittle nature, which allows them to be crushed efficiently; the other is the involvement of Fe, which suppresses the sintering of Cu particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kittel, C., “Introduction to Solid State Physics, 6th edn., Wiley, New York,1986.Google Scholar
2. Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Phys. Rev. Lett., 53 1951(1984).Google Scholar
3. Tsai, A.P., (Stadnik, Z.M., Eds), Physical Properties of Quasicrystals Springer Series in Solid-State Sciences 126, (Springer-Verlag Berlin Heidelberg 1999) p5.Google Scholar
4. Takeuchi, S., Akiyama, H., Naito, N., Shibuya, T., Hashimoto, T., Edagawa, K. and Kimura, K., J. NonCryst. Solids, 153–154 353(1993).Google Scholar
5. Akiyama, H., Honda, S., Hashimoto, T., Edagawa, K., , S, , Takeuchi, Jpn.J. Appl.Phys., B32 L1003(1993).Google Scholar
6. Tsai, A.P., Suenaga, H., Ohmori, M., Yokoyama, Y., Inoue, A. and Masumoto, T., Jpn.J.Appl.Phys., 31 2530(1992).Google Scholar
7. Koster, U., Liu, W., , H, , Liebertz, Michel, M., J. Non-Cryst. Solids, 153–154 446 (1993).Google Scholar
8. Dubois, J.M., Kang, S.S. and Stebut, J. von, J. Mater. Sc. Lett., 10 37(1991).Google Scholar
9. Kang, S.S, Dubois, J.M., and Stebut, J. von, J.Mater. Res., 8 471 1993).Google Scholar
10. Jenks, C.J. nd Thiel, P.A., J. Molecular Catalysis A: Chemical, 31 301 (1998).Google Scholar
11. Tsai, A.P., Inoue, A. and Masumto, T., Jpn. J. Appl. Phys., 26 L1505 (1987).Google Scholar
12. Dubois, J.M., Kang, S.S., Massiani, Y., J. Non-Cryst. Solids, 153–154 443 (1993).Google Scholar
13. Chang, S.-L., Anderegg, J.W. and Thiel, P.A., J. Non-Cryst. Solids, 195 95 (1996).Google Scholar
14. Pinhero, P.J., Chang, S.-L., Anderegg, J.W. and Thiel, P.A., Phil. Mag,,. B75 271 (1997).Google Scholar
15. Pinhero, P.J., Anderegg, J.W., Sordelet, D.J., Lograsso, T.A., Delaney, D.W. and Thiel, P.A., J. Mater. Res., 4 3185 (1999).Google Scholar
16. Friedrich, J. B., Wainwright, M.S., Young, D. J., J. Catal., 80 1(1983).Google Scholar
17.Mitui Chemicals and Petroleum Energy Center, US Patent 6,028,119(2000)Google Scholar
18. Elser, V., Phys. Rev.B, B32 4892(1985).Google Scholar
19. Schmid, A.K., Atlan, D., Itoh, H., Heinrich, B., Ichinokawa, T. and Kirschner, J., Phys. Rev., B48 2855 (1993).Google Scholar