Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-06T13:22:28.724Z Has data issue: false hasContentIssue false

Rapid Thermal Processing-Based Heteroepitaxy: Material and Device Challenges

Published online by Cambridge University Press:  15 February 2011

J. L. Hoyt
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305
P. Kuo
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305
K. Rim
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305
J. J. Welser
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305
R. M. Emerson
Affiliation:
now with Santa Barbara Research Center, Goleta, CA 93117
J. F. Gibbons
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA, 94305
Get access

Abstract

Material and device challenges for Rapid Thermal Processing (RTP) of heterostructures are discussed, focusing on RTP-based epitaxy in the Si/Si1−xGex system. While RTP-based heteroepitaxy offers enhanced processing flexibility, it also poses significant challenges for temperature measurement and control. Several examples of Si/Si1−xGex device structures are discussed from the point of view of the sensitivity of device parameters to variations in layer thickness and composition. The measured growth kinetics for Si and Si1−xGex are then used to estimate growth temperature tolerances for these structures. Demanding applications are expected to require temperature control and uniformity to within 0.5°C.

Future research challenges include the fabrication of structures with monolayer thickness control using self-limited growth techniques. Atomic layer epitaxy (ALE) is a well-known example of such a growth technique. In ALE, the wafer is cyclically exposed to different reactants, to achieve layer-by-layer growth. An RTP-based atomic layer epitaxy process, and its application to the growth of CdTe films, is briefly discussed. The extension to Column IV alloys follows readily. The RTP-based process enables self-limited growth for precursor combinations for which isothermal ALE is not feasible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gibbons, J.F., Gronet, C.M., and Williams, K.E., Appl. Phys. Lett. 47, 721 (1986).Google Scholar
[2] Reynolds, S., Vook, D.W., and Gibbons, J.F., Appl. Phys. Lett, 49, 1720 (1986).Google Scholar
[3] Green, M.L., Brasen, D., Luftman, H. and Kannan, V.C., J. Appl. Phys. 65, 2558 (1989).Google Scholar
[4] Sturm, J.C., Schwartz, P.V., Prinz, E.J., and Manoharan, H., J. Vac. Sci. Technol. B 9, 2011 (1991).Google Scholar
[5] Burns, G.P. and Wilkes, J.G., Semicond. Sci. Technol. 3, 442 (1988).Google Scholar
[6] Bean, J.C., Sheng, T.T., Feldman, L.C., Fiory, A.T., and Lynch, R.T., Appl. Phys. Lett., 44, 102 (1983).Google Scholar
[7] Drowley, C.I. and Turner, J.E., in Proc. Tenth Intl. Conf. on Chemical Vapor Deposition 1987, edt. by Cullern, G.W. and Blocher, J.M., (Electrochem. Soc. Press, Pennington, NJ, 1987), p. 243.Google Scholar
[8] King, C.A., Hoyt, J.L., Gronet, C.M., Gibbons, J.F., Scott, M.P., and Turner, J., IEEE Elec. Dev. Lett., 10, 52 (1989).Google Scholar
[9] Hoyt, J.L., Noble, D.B., Ghani, T., King, C.A., and Gibbons, J.F., Scott, M.P., Laderman, S.S., Nauka, K., Turner, J.E., Rosner, S.J., and Kamins, T.I., in “Proceedings of the Second International Conference on Electronic Materials”, edt. by Chang, R., Sugano, T., and Nguyen, V. (Mat. Res. Soc., Pittsburgh, Pa, 1991), p. 551.Google Scholar
[10] Houghton, D.C., J. Appl. Phys. 70, 2136 (1991).Google Scholar
[11] Garone, P.M., Sturm, J.C., Schwartz, P.V., Schwarz, S. A., and Wilkens, B.J., Appl. Phys. Lett 56 (1990), 1275 (1990).Google Scholar
[12] Meyerson, B.S., Uram, K.J., and LeGoues, J.K., Appl. Phys. Lett. 53, 2555 (1988).Google Scholar
[13] Harame, D.L., Comfort, J.H., Cressler, J.D., Crabbe, E.F., Sun, J.Y.-C., Meyerson, B.S., and Tice, T., IEEE Trans. Elec. Dev. 42, 455 (1995), and references therein.Google Scholar
[14] Gibbons, J.F., King, C.A., Hoyt, J.L., Noble, D.B., Gronet, C.M., Scott, M.P., Rosner, S.J., Laderman, S.S., Nauka, K., Turner, J. and Kamins, T.I., in IEDM Tech. Dig., 566 (1988).Google Scholar
[15] King, C.A., Hoyt, J.L., and Gibbons, J.F., IEEE Trans. Elec. Dev. 36, 2093 (1989).Google Scholar
[16] Kamins, T., Nauka, K., Kruger, J., Camnitz, L., Scott, M., Turner, J. Rosner, S., Hoyt, J., King, C., Noble, D., and Gibbons, J., in IEDM Tech. Dig., 647 (1989).Google Scholar
[17] Prinz, E.J., Garone, P.M., Schwartz, P.V., Xiao, X., and Sturm, J.C., in IEDM Tech. Dig., 639 (1989).Google Scholar
[18] Walle, C.G. Van de and Martin, R.M., Phys. Rev. B, 34 (8), 5621 (1986).Google Scholar
[19] Raghavan, G., Hughes Research Laboratory, Malibu, CA, private communication.Google Scholar
[20] Welser, J.J., Hoyt, J.L., and Gibbons, J.F., IEDM Tech. Dig., 1000 (1992).Google Scholar
[21] Welser, J.J., Hoyt, J.L., and Gibbons, J.F., IEEE Elec. Dev. Lett., 15 (3), March 1994.Google Scholar
[22] Welser, J.J., Hoyt, J.L., and Gibbons, J.F., IEDM Tech. Dig., 373 (1994).Google Scholar
[23] Garone, P.M., Venkataraman, V., and Sturm, J.C., IEEE Elec. Dev. Lett. 13, 56 (1992).Google Scholar
[24] Verdonckt-Vandebroek, S., Crabbe, E.F., Meyerson, B.S., Harame, D.L., Restle, P.J., Stork, J.M.C., Megdanis, A.C., Stanis, C.L., Bright, A.A., Kroesen, G.M.W., and Warren, A.C., IEEE Elec. Dev. Lett. 12, 447 (1991).Google Scholar
[25] Voinigescu, S.P., Salama, C.A.T., Noel, J.-P., and Kamins, T.I., IEDM Tech. Dig., 369 (1994).Google Scholar
[26] Lassig, S.E., Debolske, T.J. and Crowley, J.L., in Rapid Thermal Processing of Electronic Materials, (Mat. Res. Soc., Pittsburgh, PA, 1987), p. 103.Google Scholar
[27] see for example Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures, (Academic Press, Inc., New York, 1991).Google Scholar
[28] Suntola, T. and Antson, M.J., U.S. Patent No. 4,058,430 (1977).Google Scholar
[29] Atomic Layer Epitaxy, edited by Suntola, T. and Simpson, M. (Blackie, London, England, 1990), and references therein.Google Scholar
[30] Fachinger, W., Sitter, H., and Juza, P., Appl. Phys. Lett. 53, 2519 (1988).Google Scholar
[31] Fachinger, W. and Sitter, H., J. Cryst. Growth 99, 566 (1990).Google Scholar
[32] Wang, W.S., Ehsani, H., and Bhat, I.B., J. Electron. Mater. 22, 873 (1993).Google Scholar
[33] Nishizawa, J., in Compound Semiconductors: Growth, Processing, and Devices, edited by Holloway, P.H. and Anderson, T.H. (CRC Press, Inc., Boca Raton, Florida, 1989).Google Scholar
[34] Emerson, R.M., Ph.D. Thesis, Aug. 1993.Google Scholar
[35] Emerson, R.M., Hoyt, J.L., and Gibbons, J.F., Appl. Phys. Lett. 65, 1103 (1994).Google Scholar
[36] Chu, W.-K., Mayer, J.W., and Nicolet, M.-A., Backscattering Spectrometry, (Academic Press, New York, 1978), pp. 223273.Google Scholar