Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T23:59:42.027Z Has data issue: false hasContentIssue false

Rare-Earth Doping by Ion Implantation and Related Techniques

Published online by Cambridge University Press:  21 February 2011

Ian G. Brown*
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
Get access

Abstract

Some metal plasma techniques have been developed that provide a convenient means for the doping of semiconductor hosts with rare-earths. These plasma and ion beam tools are based on the application of vacuum arc discharges for the formation of dense rare-earth plasmas which then can be used in a number of ways for doping and otherwise introducing the rare-earths into substrate materials. At the low energy end of the spectrum, the streaming metal plasma can be used for the deposition of thin films, and if more than one plasma source is used then of multilayer structures also. Or by building the vacuum-arc rare-earth plasma generator into an ion source configuration, high current ion beams can be produced for doing high energy ion implantation; alternatively the substrate can be immersed in the streaming rare-earth plasma and by using appropriately phased high voltage substrate pulsing and pulsed plasma generation, plasma immersion ion implantation can be done. Between these two limiting techniques – low energy plasma deposition and high energy ion implantation – a spectrum of hybrid methods can be utilized for rare earth doping. We've made a number of plasma and ion sources of this kind, and we've doped a wide range of substrates with a wide range of rare-earths. For example we've implanted species including Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er and Yb into host materials including Si, GaAs, InP and more. The implantation dose can range from a low of about 1013 cm−2 up to as high as about 1017 cm−2, and the ion energy can be varied from a few tens of eV up to about 200 keV. Here we review these vacuum-arc-based plasma methods for rare-earth doping, describing both the tools and techniques that are available and the applications to which we've put the methods in our laboratory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for instance, “Ion Implantation and Plasma Assisted Processes”, edited by Hochman, R. F., Solnick-Legg, H. and Legg, K. O., (ASM, Ohio, 1988).Google Scholar
2.Plasma Processing and Synthesis of Materials”, edited by Apelian, D. and Szekely, J., Mat. Res. Soc. Symp. Proc. Vol 98, (MRS, Pittsburgh, 1987).Google Scholar
3. Deamaley, G., Nucl. Instr. and Meth. B50, 358 (1990).Google Scholar
4. Iwaki, M., Critical Rev. in Solid State and Mat. Sci., 15, 473 (1989).Google Scholar
5. Rehn, L. E. and Okamoto, P. R., Nucl. Instr. and Meth. B39, 104 (1989).Google Scholar
6. Wolf, G. K. and Ensinger, W., Nucl. Instr. and Meth. B59/60, 173 (1991).Google Scholar
7. See, for instance, the proceedings of conferences such as those on Ion Implantation Technology, and Ion Beam Modification of Materials, in Nucl. Intrum. Methods.Google Scholar
8. Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J. and Tran, N. C., J. Appl. Phys. 62, 4591 (1987).Google Scholar
9. Scheuer, J. T., Shamim, M. and Conrad, J. R., J. Appl. Phys. 67, 1241 (1990).Google Scholar
10. Tendys, J., Donnelly, I. J., Kenny, M. J. and Pollock, J. T. A., Appl. Phys. Lett. 53, 2143 (1988).Google Scholar
11. Wong, H., Qian, X. Y., Carl, D., Cheung, N. W., Lieberman, M. A., Brown, I. G. and Yu, K. M., Mat. Res. Soc. Symp. Proc. 147, 91, (MRS, Pittsburgh, 1989).Google Scholar
12. Qian, X. Y., Wong, H., Carl, D., Cheung, N. W., Lieberman, M. A., Brown, I. G. and Yu, K. M., 176th Electrochemical Society Meeting, Hollywood, Fla, October 15-20, 1989.Google Scholar
13. Qian, X. Y., Kiang, M. H., Huang, J., Carl, D., Cheung, N. W., Lieberman, M. A., Brown, I. G., Yu, K. M. and Current, M. I., Nucl. Instrum. Meth. Phys. Res. B55, 888 Google Scholar
14. Brown, I. G., Anders, A., Anders, S., Yao, X., Yu, K. M. and Ivanov, I. C., “Plasma Synthesis of Metallic and Composite Thin Films with Atomically Mixed Substrate Bonding”, 8th International Conference on Ion Beam Modification of Materials, Heidelberg, Germany, September 7-11, 1992; to be published in Nucl. Instrum. Meth. B (1993).Google Scholar
15. See, for instance, Lafferty, J. M., ed., “Vacuum Arcs - Theory and Application”, (John Wiley and Sons, New York, 1980).Google Scholar
16. Boxman, R. L., Goldsmith, S., Shalev, S., Yaloz, H. and Brosh, N., Thin Solid Films 139, 41 (1985).Google Scholar
17. Sanders, D. M., “Review of Ion Based Coating Processes Derived from the Cathodic Arc”, J. Vac. Sci. Tech. A7, 2339 (1989).Google Scholar
18. Bergman, C., in “Ion Plating and Implantation”, edited by Hochman, R. F., American Society for Metals, USA, 1986. (Proceedings of the ASM Conference on Applications of Ion Plating and Implantation to Materials, June 3-5, 1985, Atlanta, GA).Google Scholar
19. Lindfors, P. A., loc. cit. [17].Google Scholar
20. Brown, I. G., Galvin, J. E., and MacGill, R. A., Appl. Phys. Lett. 47 358 (1985).Google Scholar
21. Brown, I. G., in “The Physics and Technology of Ion Sources”, Brown, I. G. editor, (Wiley, N.Y., 1989).Google Scholar
22. Brown, I. G., Rev. Sci. Instrum. 63, 2351 (1992).Google Scholar
23. Brown, I. G., Feinberg, B., and Galvin, J. E., J. Appl. Phys. 63, 4889 (1988).Google Scholar
24. Brown, I. G. and Godechot, X., IEEE Trans. Plasma Sci. PS–19, 713 (1991).Google Scholar
25. Tuma, D. T., Chen, C. L. and Davies, D. K., J. Appl. Phys. 49, 3821 (1978).Google Scholar
26. Daalder, J. E., Physica 104C, 91 (1981).Google Scholar
27. Aksenov, I. I., Konovalov, I. I., Kudryavtseva, E. E., Kunchenko, V. V., Padalka, V. G. and Khoroshikh, V. M., Sov. Phys. Tech. Phys. 29(8), 893 (1984).Google Scholar
28. Aksenov, I. I., Belous, V. A., Padalka, V.G. and Khoroshikh, V. M., Sov. J. Plasma Phys. 4(4), 425 (1978).Google Scholar
29. Osipov, V. A., Padalka, V. G., Sablev, L. P. and Stupak, R. I., Instrum. and Exp. Techniques 21(6), 173 (1978).Google Scholar
30. Aksenov, I. I., Vakula, S. I., Padalka, V. G., Strelnitski, V. E. and Khoroshikh, V. M., Sov. Phys. Tech. Phys. 25(9), 1164, (1980).Google Scholar
31. Voitsenya, V. S., Gorbanyuk, A. G., Onishchenko, I. N. and Safranov, B. G., Sov. Phys. -Tech. Phys. 9(2), 221 (1964).Google Scholar
32. Aksenov, I. I., Belokhvostikov, A. N., Padalka, V. G., Repalov, N. S. and Khoroshikh, V. M., Plasma Physics and Controlled Fusion 28, 761 (1986).Google Scholar
33. Storer, J., Galvin, J. E. and Brown, I. G., J. Appl. Phys. 66, 5245 (1989).Google Scholar
34. Anders, S.. Anders, A. and Brown, I., submitted for publication in Appl. Phys. Lett. (1993).Google Scholar
35. MacGill, R. A., Brown, I. G. and Galvin, J. E., Rev. Sci. Instrum. 61 (1990) 580.Google Scholar
36. Brown, I. G., Galvin, J. E., MacGill, R. A. and Paoloni, F. J., Rev. Sci. Instrum. 61 (1990) 577.Google Scholar
37. Brown, I. G., Galvin, J. E., MacGill, R. A. and Wright, R. T., Rev. Sci. Instrum. 58 (1987) 1589.Google Scholar
38. Ziegler, J. F., Biersack, J. P. and Littmark, U., in “The Stopping and Range of Ions in Solids”, Vol 1, edited by Ziegler, J. F. (Pergamon, N.Y., 1985).Google Scholar
39. Yu, K. M., Katz, B., Wu, I. C. and Brown, I. G., “Formation of Iridium Silicide Layer by High Dose Iridium Ion Implantation into Silicon”, Nucl. Instrum. Methods B58, 27 (1991).Google Scholar
40. Kim, C., Ogletree, D. F., Salmeron, M. B., Godechot, X., Somorjai, G. A. and Brown, I. G., “Preparation of Monolayers of Re and Pt on Metal Substrates Using a Pulsed Metal Plasma Deposition Source”, Appl. Surface Sci. 59, 261 (1992).Google Scholar
41. Godechot, X., Salmeron, M. B., Ogletree, D. F., Galvin, J. E., MacGill, R. A., Yu, K. M. and Brown, I. G., “Thin Film Synthesis using Miniature Pulsed Metal Vapor Vacuum Arc Plasma Guns”, Mat. Res. Soc. Symp. Proc. 190, 95 (1991).Google Scholar
42. Anders, S., Anders, A., Kortright, J., Yu, K. M., Brown, I. G. and Ivanov, I. C., “X-Ray Mirror Production by Vacuum Arc Deposition Techniques”, International Conference on Metallurgical Coatings and Thin Films, San Diego, CA, April 1993.Google Scholar
43. Brown, I., in Plasma Synthesis and Processing of Materials, Upadhya, K., editor, (TMS, Warrendale, PA, 1993).Google Scholar