Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T22:20:54.731Z Has data issue: false hasContentIssue false

Reactions of Fluorine-Containing Compounds on Thermal SiO2

Published online by Cambridge University Press:  28 February 2011

Stephen Joyce
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Jeffrey I. Steinfeld
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The reactivity of XeF2 and CF3 on thermally grown SiO2 surfaces has been investigated. CF3 radicals were generated by infrared multiple-photon dissociation of C2F6 using a pulsed CO2laser. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical state of the surface after exposure to the gases. Both CF3 and XeF2 are relatively inert to annealed SiO2 surfaces.- Ion damaged surfaces are much more reactive. Implications for ion enhancement of etching are discussed. XPS spectra reveal fluorine, from XeF2 bonded to both silicon and oxygen. The CF3 radical appears to undergo little dissociation upon chemisorption on SiO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Winters, I. H.F., Coburn, J.W., and Chuang, T.J., J. Vac. Sci. Technol. B1, 469 (1983) and references therein.CrossRefGoogle Scholar
2. Tu, Y.-Y.. Chuang, T.J., and Winters, H.F., Phys. Rev. B23, 823 (1981).Google Scholar
3. Gerlach-Meyer, U., Coburn, J.W., and Kay, E., Surf. Sci. 103, 177 (1981).Google Scholar
4. Flamm, D.L., Donnelly, V.M. and Ibbotson, D.E.. J. Vac. Sci. Technol. B1 23 (1983).Google Scholar
5. a.) Winters, H.F., J. Vac. Sci. Technol. B1, 928 (1983), b.) H.F. Winters and J.W. Coburn, Appl. Phys. Lett. 34, 70 (1979).Google Scholar
6. Loudiana, M.A., Schmid, A., Dickinson, J.T., and Ashley, E.J., Surf. Sci. 141, 409 (1984).Google Scholar
7. Turos, A., Weg, W.F. Van der, Sigurd, D., and Mayer, J.W., J. Appl. Phys. 45, 2777 (1974).Google Scholar
8. Hoffman, S. and Thomas, J.H. III, J. Vac. Sci. Technol. B1, 43 (1983).Google Scholar
9. Steinfeld, J.I., Anderson, T.G., Reiser, C., Denison, D.R., Hartsough, L.D., and Hollahan, J.R., J. Electrochem. Soc. 127, 514 (1980).Google Scholar
10. Selamoglu, N.. Rossi, M.J.. and Golden, D.M., J. Chem. Phys. 84, 2400 (1986).Google Scholar
11. Mayer, T.M. and Barker, R.A.. J. Vac. Sci. Technol. 21. 757 (1982).Google Scholar
12. Roop, B., Joyce, S., Schultz, J.C., and Steinfeld, J.I., J. Chem. Phys. 83, 6012 (1985).CrossRefGoogle Scholar
13. Flitsch, R. and Raider, S.I.. J. Vac. Sci. Technol. 12, 305 (1975).Google Scholar
14. Hollinger, G., Jugnet, Y.. Pertosa, P., and Duc, T.M., Chem. Phys. Lett. 36, 441 (1975).Google Scholar
15. Grunthaner, F.J.. Grunthaner, P.J.. Vasquez, R.P., Lewis, B.F., Maserjian, J., and Madhukar, A., Phys. Rev. Lett. 43, 1683 (1979).CrossRefGoogle Scholar
16. Carriere, B. and Lang, B., Surf. Sci. 64, 207 (1977).Google Scholar
17. Roop, B., Joyce, S., Schultz, J.C., and Steinfeld, J.I., Surf. Sci. 173, 455 (1986).CrossRefGoogle Scholar
18. a.)Brant, P., Hashwall, J.A., Carter, F.L., DeMarco, R., and Fox, W.B., J. Am. Chem. Soc. 103, 329 (1981):b.) S. Joyce, PhD thesis, MIT (1987).Google Scholar
19. Thynne, J.C.J. and MacNeil, K.A.G., Int. J. Mass Spectrom. Ion Phys. 5, 95 (1970).CrossRefGoogle Scholar
20. Scofield, J.H., J. Electron Spect. 8, 129 (1976).Google Scholar
21. Chuang, T.J.. Winters, H.F., and Coburn, J.W., Appl. Surf. Sci. 2, 514 (1978).CrossRefGoogle Scholar