Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-16T01:51:58.743Z Has data issue: false hasContentIssue false

Real-time spectroscopic ellipsometry as an in-situ probe of the growth dynamics of amorphous and epitaxial crystal silicon for photovoltaic applications

Published online by Cambridge University Press:  01 February 2011

D.H. Levi
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, USA
C.W. Teplin
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, USA
E. Iwaniczko
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, USA
Y. Yan
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, USA
T.H. Wang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, USA
H.M. Branz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, USA
Get access

Abstract

In this paper we report on our work using in-situ real time spectroscopic ellipsometry (RTSE) to study the dynamics of hot-wire chemical vapor deposition (HWCVD) of hydrogenated amorphous silicon (a-Si:H) and epitaxial crystal silicon (epi-Si) for photovoltaic applications. We utilize RTSE as both an in-situ diagnostic and a postgrowth analysis tool for a-Si:H/crystalline silicon heterojunction (SHJ) solar cells and epi-silicon films grown by HWCVD. RTSE enables precise thickness control of the 3 to 10 nm thick layers used in the SHJ devices, as well as monitoring crystallinity and surface roughness in real time. With the assistance of in-situ RTSE feedback we have achieved a photovoltaic energy conversion efficiency of 17% on an Al-backed p-type float-zone c-Si wafer. Open-circuit voltages above 650 mV indicate excellent passivation of the c-Si surface by the a-Si:H intrinsic layer. We have used RTSE to obtain information on the degree of crystallinity and the electronic and optical properties of films as a function of deposition conditions. RTSE has indirectly indicated the persistence of a hydrogen layer at the interface between the a-Si:H layer and the crystal silicon substrate. Absorption spectra determined by RTSE have provided guidance in device optimization.

We are also applying in-situ RTSE to study the dynamics of HWCVD growth of epi-Si. The goal of this work is to develop low-temperature methods for growing 2-10 μmthick layers of c-Si on c-Si seed layers on glass for solar cell applications. This study presents unique challenges for RTSE, as perfect epitaxial growth of c-Si on a c-Si wafer would produce no change at all in the RTSE spectra. We have found that by monitoring the pseudo-dielectric function in real time during growth we gain immediate feedback on the breakdown of epi-Si growth. Post-deposition analysis of the RTSE data provides quantitative information on the percent of c-Si and a-Si versus film thickness. The RTSE analysis has been confirmed by cross sectional TEM. Based on the rapid feedback provided by RTSE we have surpassed the previous HWCVD maxiumum of 200 nm of epi-Si growth, achieving a maximum thickness of 500 nm of epi-Si. TEM analysis has shown that micron-sized areas of these films achieve 1000 nm of epi-Si thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Platen, J., Selle, B., Sieber, I., Brehme, S., Zeimer, U., and Fuhs, W., Thin Solid Films 381, 2230 (2001).10.1016/S0040-6090(00)01214-1Google Scholar
2 Eaglesham, D.J., J. Appl. Phys. 77, (8) 35973617.10.1063/1.358597Google Scholar
3 Eaglesham, D.J., White, A.E., Feldman, L.C., Moriya, N., Jacobson, D.C., D.C., Phys. Rev. Lett. 70, 16431646, (1993).10.1103/PhysRevLett.70.1643Google Scholar
4 Wang, Q., Page, M.R., Xu, X.Q., Iwaniczko, E., Williams, E., and Wang, T.H., Thin Solid Films 430, 208211 (2003).10.1016/S0040-6090(03)00112-3Google Scholar
5For more details regarding SHJ devices and performance, please see the paper A23.5 by Wang, T. et al. in these proceedings.Google Scholar
6 Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light, 1st ed. (North-Holland, Amsterdam, 1977) p. 270283.Google Scholar
7 Kim, S. and Collins, R.W., Appl. Phys. Lett. 67, 30103012 (1995).10.1063/1.114935Google Scholar
8 Yao, H., Woollam, J.A., Alterovitz, S.A., Appl. Phys. Lett. 62, 33243326 (1993).10.1063/1.109059Google Scholar
9 Teplin, Charles W., Levi, Dean H., Iwanizcko, Eugene, Jones, Kim M., Perkins, John D., Howard Branz, M., to be published, Journal of Applied Physics, 2005.Google Scholar
10 Cody, G.D., in Semiconductors and Semimetals, Vol. 21 B, Pankove, J.I., Ed., p11, Academic, New York, 1984.Google Scholar
11A.Ferlauto, S., Ferreira, G.M., Chen, C., Rovira, P.I., Wronski, C.R., Collins, R.W., in Photovoltaics for the 21st Century II, Proceedings of the International Symposium, Eds. McConnell, R.D., Kapur, V.K., p199, The Electrochemical Society Proceedings Vol. 2001-10.Google Scholar
12 Levi, D.H., Teplin, C.W., Iwaniczko, E., Ahrenkiel, R.K., Branz, H.M., Page, M.R., Yan, Y., Wang, Q., Wang, T., Mat. Res. Soc. Symp. Proc. Vol. 808, 239 (2004).10.1557/PROC-808-A8.3Google Scholar
13growth model for HWCVD discussing H abstraction or dangling bondsGoogle Scholar
14 Liu, X., Pohl, R.O., Crandall, R.S., Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices, (Materials Research Society Symposium Proceedings Vol 557) 323328, (2000).Google Scholar
15 Bruyere, J.C., Deneuville, A., Mimi, A.. Fontenille, J., Danielou, R., Jour. Appl. Phys. 51 21992205 (1980).10.1063/1.327895Google Scholar
16 Wang, T.H., Wang, Q., Iwaniczko, E., Page, M.R., Levi, D.H., Yan, Y., Teplin, C.W., Xu, Y., Wu, X.Z., and Branz, H.M., Proceedings of the 19th European PVSEC, June, 2004 (Paris, France).Google Scholar
17 Wang, Q., Page, M.R., Xu, X.Q., Iwaniczko, E., Williams, E., and Wang, T.H., Thin Solid Films 430, 208211 (2003).10.1016/S0040-6090(03)00112-3Google Scholar
18 Kim, S. and Collins, R.W., Appl. Phys. Lett. 67 30103012 (1995).10.1063/1.114935Google Scholar
19 Teplin, Charles W., Levi, Dean H., Iwanizcko, Eugene, Jones, Kim M., Perkins, John D., Branz, Howard M., to be published, Journal of Applied Physics, 2005.Google Scholar