Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-06T06:19:40.431Z Has data issue: false hasContentIssue false

Recent Advances in Solid-State Laser Materials*

Published online by Cambridge University Press:  21 February 2011

Peter F. Moulton*
Affiliation:
Lincoln Laboratory, Massachusetts Institute of TechnologyLexington, Massachusetts 02173–0073
Get access

Abstract

After some years of relatively little activity, the field of solid-state lasers has again become an important research area. Laser operation has been demonstrated in new combinations of laser-active ions and host crystals to provide wavelength-tunable output and the promise of greatly improved efficiency. This paper will discuss several currently interesting classes of laser materials: divalent-transition-metal-doped, rutile- and perovskite-structured fluoride crystals such as Co:MgF2 and V:KMgF3 , Ti3+-doped materials including Ti:A12O3 and a variety of large-lattice-size garnet crystals doped with Cr3+ and/or Nd3+.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was sponsored by the Department of the Air Force and the Department of Energy under a subcontract from the Lawrence Livermore Laboratory.

References

REFERENCES

1. Johnson, L. F., Dietz, R. E. and Guggenheim, H. J., Phys. Rev. Lett. 11, 318 (1963).CrossRefGoogle Scholar
2. Johnson, L. F., Dietz, R. E. and Guggenheim, H. J. , Appl. Phys. Lett. 5, 21 (1964).CrossRefGoogle Scholar
3. Johnson, L. F., Guggenheim, H. G. and Thomas, R. A., Phys. Rev. 149, 179 (1966).CrossRefGoogle Scholar
4. Johnson, L. F. and Guggenheim, H. J., J. Appl. Phys. 38, 4837 (1967).CrossRefGoogle Scholar
5. Moulton, P. F., Mooradian, A. and Reed, T. B., Opt. Lett. 3, 164 (1978).CrossRefGoogle Scholar
6. Moulton, P. F. and Mooradian, A., Appl. Phys. Lett. 35, 838 (1979).CrossRefGoogle Scholar
7. Moulton, P. F., IEEE J. Quantum Electron, QE–18, 1185 (1982).CrossRefGoogle Scholar
8. Reed, T. B., Fahey, R. E. and Moulton, P. F., J. Crystal Growth 42, 569 (1977).CrossRefGoogle Scholar
9. Krupke, W. F., “V2+:MgF2 Solid-State Laser for Fusion Applications: in Proceedings of the International Conference on Lasers '80, Collins, C. B., ed., (STS Press, McLean, Virginia, 1981), p. 511.Google Scholar
10. Khattak, C., Crystal Systems, Inc., Salem, Massachusetts.Google Scholar
11. Liaw, J. H. W., Union Carbide Corporation, Washougal, Washington.Google Scholar
12. Shand, M. L. and Walling, J. C., IEEE J. Quantum Electron, QE–18, 1828 (1982).Google Scholar
13. Huber, G., Paper H.2, International Conference on Lasers '82 New Orleans, Louisiana December 1982.Google Scholar
14. Kiss, Z. J. and Duncan, R. C., Appl. Phys. Lett. 5, 200 (1964).Google Scholar
15. Pruss, D., et al. , Appl. Phys. B28, 355 (1982).CrossRefGoogle Scholar
16. Zharikov, E. V., et al. , Sov. J. Quantum Electron, 12, 1652 (1982).CrossRefGoogle Scholar