Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T00:11:05.739Z Has data issue: false hasContentIssue false

Reversible Laser Modification of High Temperature Superconducting Y-Ba-Cu-O Films

Published online by Cambridge University Press:  25 February 2011

Robert R. Krchnavek
Affiliation:
Bellcore, Morristown, NJ 07960
Siu-Wai Chan
Affiliation:
Bellcore, Red Bank, NJ 07701
C.T. Rogers
Affiliation:
Bellcore, Red Bank, NJ 07701
F. De Rosa
Affiliation:
Bellcore, Red Bank, NJ 07701
P.F. Miceli
Affiliation:
Bellcore, Red Bank, NJ 07701
S.J. Allen Jr.
Affiliation:
Bellcore, Morristown, NJ 07960
Get access

Abstract

We describe a reversible technique for locally modifying the oxygen stoichiometry and electrical transport properties of superconducting thin films. A focused argon ion laser beam is scanned across the surface of a YBa2Cu3O7-x thinfilm, contained in a vacuum, at incident power levels well below those necessary for ablation. The change in oxygen stoichiometry is monitored in-situ by the room temperature electrical resistance. We have measured the superconducting properties of these locally modified films. The resulting R vs T curve for the composite structure (film/laserstripe/film) shows the expected double transition. The first transition, corresponding to the unmodified film, occurs at 87 K while the second transition, corresponding to the modified stripe, occurs at a lower temperature and is a function of the laser induced change in the room temperature electrical resistance. The critical current for the composite structure is depressed from the original film. The laser writing can be erasedor bleached out by room temperature exposure to an oxygen plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Muller, K. A., Z. Phys. B 64, 189 (1986).Google Scholar
2. Wu, M. K., Ashburn, J. R., Torng, C. T., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
3. Rothschild, M., Sedlacek, J.H.C., Black, J.G. and Ehrlich, D.J., IEEE Elec. Dev. Lett., 9, 68 (1988).Google Scholar
4. Rothschild, M., Sedlacek, J.H.C., Black, J.G. and Ehrlich, D.J., Appl. Phys. Lett., 52, 404 (1988).Google Scholar
5. Liberts, G., Eyett, M. and Bauerle, D., Appl. Phys. A, 45, 313 (1988).CrossRefGoogle Scholar
6. Chan, Siu-Wai, Bagley, B.G., Greene, L.H., Giroud, M., Feldmann, W. L., Jenkin, K. R. II and Wilkins, B. J., Appl. Phys. Lett., 53 (1988) 1443.Google Scholar
7. Calder, I.D. and Sue, R., J. Appl. Phys. 53, 7545 (1982).Google Scholar
8. Heremans, J., Morelli, D.T., Smith, G.W. and Strite, S.C. III, Phys. Rev. B, 37, 1604 (1988).Google Scholar
9. Uchida, S., Takagi, H., Hasegawa, T., Kishio, K., Tajima, S., Kitazawa, K., Fueki, K. and Tanaka, S., in Novel Superconductivity, edited by Wolf, Stuart and Kresin, Vladimir (Plenum Press, New York 1987), p. 855.Google Scholar
10. Bagley, B.G., Greene, L.H., Tarascon, J.-M., and Hull, G.W., Appl. Phys. Lett., 51, 622 (1987).Google Scholar
11. Char, K., Lee, M., Barton, R.W., Marshall, A.F., Bozovic, I., Hammond, R.H., Beasley, M.R., Geballe, T.H., and Kapitulnik, A., Phys. Rev., B38, 834 (1988).Google Scholar
12. Char, K., private communication.Google Scholar
13. Marshall, A.F., Barton, R.W., Char, K., Kapitulnuk, A., Oh, B.. Hammond, R.H. and Laderman, S.S., Phys. Rev. B37, 9353 (1988).Google Scholar