Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-16T23:31:24.776Z Has data issue: false hasContentIssue false

A Review of Recent Developments in Iron Aluminides

Published online by Cambridge University Press:  28 February 2011

Sandra K. Ehlers
Affiliation:
Universal Energy Systems, Inc., Dayton, OH 45432-1894
Siamack Mazdiyasni
Affiliation:
Universal Energy Systems, Inc., Dayton, OH 45432-1894
Harry A. Lipsitt
Affiliation:
AFWAL/MLLM, Wright-Patterson AFB, OH 45433-6533
Get access

Abstract

This paper presents a review of recent research conducted at the Air Force Wright Aeronautical Laboratories (AFWAL)/Materials Laboratory to develop iron-aluminides as elevated temperature structural materials. The research consisted of investigations on the microstructure, tensile behavior, deformation, and fracture mechanisms of the DO3 and B2 ironaluminides. Binary Fe-Al alloys with a wide range of Al contents, solidsolution ternary alloys and precipitation- and dispersion-strengthened two-phase alloys have been investigated. It is shown that iron-aluminides have a potential to be structural materials at least up to 650°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sykes, C. and Bampfylde, J. W., J. Iron and Steel Inst. 130(11), 389 (1934).Google Scholar
2. Morgan, E. R. and Zackay, V. F., Metal Progress, 68, 126 (1955).Google Scholar
3. Kerr, W., “Development of Iron Aluminides,” Presentation at the 1986 ASM Fall Meeting, Orlando, FL, 6-9 October 1986.Google Scholar
4. Mendiratta, M. G., Ehlers, S. K., Chatterjee, D. K., and Lipsitt, H. A., “Tensile Flow and Fracture Behavior of DO Fe-25 at.% Al and Fe-31 at.% Al Alloys,” accepted for publication in Mit. Trans. A.Google Scholar
5. Mendiratta, M. G., Ehlers, S. K., Chatterjee, D. K., and Lipsitt, Harry A., “Tensile Flow and Fracture Behavior of RSR Iron Aluminides,” Presented at the Third Conference on Rapid Solidification Processing, Gaithersburg, MD, 6-9 December 1982, published in the conference proceedings.Google Scholar
6. Marcinkowski, M. J., Taylor, M. E., and Kayser, F. X., J. Mater. Sci., 10, 406 (1975).Google Scholar
7. Mendiratta, M. G., Kim, H. M., and Lipsitt, H. A., Met. Trans. A, 15, 395 (1984).Google Scholar
8. Mendiratta, M. G. and Law, C. C., “Dislocation Energies and Mobilities in B2-Ordered Fe-Al Alloys,” accepted for publication in the J. Mater. Sci.Google Scholar
9. Mendiratta, M. G., Mah, T., and Ehlers, S. K., Interim Technical Report, October 1982, under Air Force Contract F33615-81-C-5059 (Systems Research Laboratories, Dayton, OH).Google Scholar
10. Mazdiyasni, S., Unpublished research, AFWAL Materials Laboratory, Wright-Patterson AFB, OH.Google Scholar
11. Mendiratta, M. G. and Lipsitt, H. A., Materials Research Society Symposium Proceedings, 39, 155 (1985).Google Scholar
12. Ehlers, S. K. and Me-ndiratta, M. G., J. Mater. Sci., 19, 2203 (1984).Google Scholar
13. Mendiratta, M. G., Ehlers, S. K., and Lipsi, H. A.-t, “DO -B2-a Phase Relations in Fe-Al-Ti Alloys,” accepted for publicatin by Met. Trans. A.Google Scholar
14. Dimiduk, D. M., Mendiratta, M. G., Banerjee, D., and Lipsitt, H. A., “A Structural Study of Ordered Precipitates in an Ordered Matrix Within the Fe-Al-Nb System,” paper in preparation.Google Scholar
15. Mendiratta, M. G., Mah, T., and Ehlers, S. K., “Mechanisms of Ductility and Fracture in Complex High-Temperature Materials,” AFWAL-TR-85-4061, Final Technical Report under Air Force Contract F33615-81-C-5059 (Systems Research Laboratories, Dayton, OH).Google Scholar
16. Mendiratta, M. G., Mah, T., and Ehlers, S. K., “Mechanisms of Ductility, Toughness and Fracture in Complex High-Temperature Materials,” Interim Technical Reports (April 1985, November 1985, and May 1986), under Air Force Contract F33615-84-C-5071 (Universal Energy Systems, Inc., Dayton, OH).Google Scholar