Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-08T02:30:15.324Z Has data issue: false hasContentIssue false

Role of a Free Energy Action Principle in Predicting Microstructure Formation

Published online by Cambridge University Press:  15 February 2011

J.S. Kirkaldy*
Affiliation:
Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. West, Hamilton, Ontario, CanadaL8S 4M1
Get access

Abstract

It is demonstrated that some twenty representative free boundary diffusion-reaction and hydrodynamic patterning systems fall within the compass of the isothermal variational principle where the Lagrangian density is the free energy density g, and η is an appropriate order parameter. To illustrate the universality of the formulation we survey in some detail its degree of equivalence to twenty-one currently adopted or promoted procedures for resolving pattern degeneracies, and critically reappraise theoretical descriptions of grain growth, ordinary diffusion, spinodal decomposition and Ostwald Ripening and their predictive success. The importance of a hierarchy of kinetic scaling laws is discussed. The physics of fluctuations is essential to understanding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Whittaker, E.T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, University Press, Cambridge, 1952, pp. 244249.Google Scholar
2. Gibbs, J.W., Thermodynamics, Dover Publications, New York, 1961, pp. 55349.Google Scholar
3. Onsager, L., Phys. Rev., 37, p. 405; 38, p. 2265 (1931).Google Scholar
4. Pellew, A. and Southwell, R.V., Proc. Roy. Soc. (London), A176, pp. 312343 (1940).Google Scholar
5. Chandrasekhar, S., Hydrodynamics and Hydromagnetic Stability, Dover Publications, New York, 1961, pp. 2769.Google Scholar
6. Feynman, R.P. and Hibbs, A.R., Quantum Mechanics andPath Integrals, McGraw-Hill, New York, 1965.Google Scholar
7. Margenau, H. and Murphy, G.M., The Mathematics of Physics and Chemistry, D. Van Nostrand, New York, 1943, pp. 193209.Google Scholar
8. Silver, R.N., Phys. Rev., B11, p. 1569; B12, p. 5689 (1975).Google Scholar
9. Noether, S.E., Nach. Ges. Wiss. Gottingen, 2, p. 235 (1918).Google Scholar
10. Kirkaldy, J.S., Rep. Prog. Phys., 55, p. 723 (1992).Google Scholar
11. Kikuchi, R., Ann. Phys., 10, p. 127 (1960).Google Scholar
12. Klein, M.J. in Transport Processes in Statistical Mechanics, edited by Prigogine, I., Interscience, New York, pp. 18, 1958.Google Scholar
13. Chen, L.Q. and Simmons, J.A., Acta Met. et Mat., 42, p. 2943 (1994).Google Scholar
14. Ginzburg, V.L. and Landau, L.D., JETP, 20, p. 1064 (1950).Google Scholar
15. Landau, L.D. and Khalatnikov, I.M., Dokl. Akad. Nauk. SSSR, 96, p. 469 (1954).Google Scholar
16. Allen, S.M. and Cahn, J.W., Acta Met., 27, p. 1085 (1975).Google Scholar
17. Van Santen, R.A., J. Phys. Chem., 88, p. 5768 (1984).Google Scholar
18. Van Santen, R.A., J. Phys. Chem., 92, p. 248 (1988).Google Scholar
19. Le Chatelier, H., Comptes Rendu, 99, p. 786 (1888).Google Scholar
20. Pelcé, P., Dynamics of Curved Fronts, Academic Press, Boston, 1988.Google Scholar
21. Zeeman, E.C., Catastrophe Theory, Addison-Wesley, Reading, MA, 1977.Google Scholar
22. Mullins, W.W., J. Appl. Phys., 59, p. 1341 (1986).Google Scholar
23. Taylor, J.E., inMathematicsofMicrostructureEvolution, edited by Chen, L.Q., Fultz, B., Cahn, J.W., Manning, J.R., Morral, J.E. and Simmons, J. (TMS, Warrendale, PA, 1997), pp. 135148.Google Scholar
24. Carter, W.C., Taylor, J.E. and Cahn, J.W., JOM, 49, p. 30 (1997).Google Scholar
25. Cahn, J.W., Acta Met., 9, p. 795 (1961).Google Scholar
26. Kobayashi, R., Exp. Math., 3, p. 59 (1994).Google Scholar
27. Wheeler, A.A., Boettinger, W.J. and McFadden, G.B., Phys. Rev., A45, p. 7424 (1992).Google Scholar
28. Dewdney, A.K., Sci. Am., 259, pp. 104107 (1988).Google Scholar
29. Schuster, H.G., Deterministic Chaos, VCH, Weinheim, Germany, 1988.Google Scholar
30. Bergé, P., Pomeau, Y. and Vidal, Ch., L'order dans le Chaos, Hermann, Paris, 1984.Google Scholar
31. Mandelbrot, B.B., Freeman, W.H., The Fractal Geometry of Nature, New York, 1983, p. 126ff, p. 216ff.Google Scholar
32. Rao, S.S., ASAA Jour., 25, 1633 (1987).Google Scholar
33. Yang, Y.G., Johnson, R.A. and Wadley, H.N.G., Acta Mat., 45, 1455 (1997).Google Scholar
34. Hunt, J.D. and Jackson, K.A., Met. Trans., 236, pp. 843852 (1988).Google Scholar
35. Kirkaldy, J.S., Met. Trans., 24A, pp.16891721 (1993).Google Scholar
36. de Groot, S.R., Thermodynamics of Irreversible Processes, North-Holland, Amsterdam, 1952, pp. 197199.Google Scholar
37. Prigogine, I., Introduction to Thermodynamics oflrreversible Processes, Thomas, Springfield, IL, 1955, p. 82.Google Scholar
38. Goryachev, S.B., Phys. Rev. Letts., 72, p. 1850 (1994).Google Scholar
39. Cahn, J.W., McMaster University Workshop, June 8, 1998.Google Scholar
40. Kirkaldy, J.S., unpublished research, 1999.Google Scholar
41. Chen, L-Q. and Kikuchi, R., Scripta Met. et Mat., 30, p. 453 (1994).Google Scholar
42. Hillert, M., Doctoral Dissertation, MIT, 1956.Google Scholar
43. Hillert, M., Acta Met., 9, p. 525 (1961).Google Scholar
44. Cook, H.E., de Fontaine, D. and Hilliard, J.E., Acta Met., 17, p. 765 (1969).Google Scholar
45. Khachaturyan, A.G., Theory of Structural Transformations in Solids, John Wiley, New York, 1983, pp. 128152.Google Scholar
46. Louat, N.P., Acta Met., 22, p. 721 (1974).Google Scholar
47. Brechet, Y., private communication, 1998.Google Scholar
48. Kirkaldy, J.S. and Young, D.J., Diffusion in the Condensed State, Institute of Metals, London, pp. 2324, 1987.Google Scholar
49. Maugis, P., Phys. Rev., B53, p. 5276 (1996).Google Scholar
50. Kirkaldy, J.S., Scripta Mat., in press (1999).Google Scholar
51. Koester, W. and Dannohl, W., Z. Metallkunde, 28, p. 248 (1936).Google Scholar
52. Underwood, E.E., Doctoral dissertation, MIT, 1954.Google Scholar
53. Gust, W., Predel, B. and Nguyen-Tat, T., Z. Metallkunde, 67, p. 110 (1976).Google Scholar
54. Purdy, G.R., in Materials Science and Technology, Vol. 5, edited by Haasen, P., VCH Weinheim, 1991, pp. 305338.Google Scholar
55. Yang, C.F., Sarkar, G. and Fournelle, R.A., Acta Met., 36, p. 1511 (1988).Google Scholar
56. Greenwood, G.W., Acta Met., 4, p. 243 (1956).Google Scholar
57. Lifshitz, I.M. and Slyozov, Y.Y., J. Phys. Chem. Solid, 19, p. 35 (1961).Google Scholar
58. Wagner, C., J. Elektrochem., 65, p. 581 (1961).Google Scholar
59. Kahlweit, M., Z. Phys. Chem., 36, p. 292 (1963).Google Scholar
60. Kirkaldy, J.S., Scripta Met., 23, pp. 20192024 (1989).Google Scholar
61. Turnbull, D., Acta Met., 3, pp. 5563 (1955).Google Scholar
62. Zener, C., Trans. AIME, 167, p. 550 (1946).Google Scholar
63. Hillert, M., Jernkontorets Ann., 141, pp. 757789 (1957).Google Scholar
64. Kirkaldy, J.S., Phys. Rev., A31, 3376 (1985).Google Scholar
65. Kirkaldy, J.S., Scripta Met. et Mat., 33, 259265 (1995).Google Scholar
66. Kirkaldy, J.S., Scripta Met. et Mat., 24, 179184 (1990).Google Scholar