Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T17:11:00.535Z Has data issue: false hasContentIssue false

Role of C, O and H in III-V Nitrides

Published online by Cambridge University Press:  21 February 2011

C. R. Abernathy
Affiliation:
University of Florida, Gainesville Fl 32611
S. J. Pearton
Affiliation:
University of Florida, Gainesville Fl 32611
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville Fl 32611
J. W. Lee
Affiliation:
University of Florida, Gainesville Fl 32611
C. B. Vartuli
Affiliation:
University of Florida, Gainesville Fl 32611
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185;and
J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185;and
J. M. Zavada
Affiliation:
U. S. Army Research Laboratory, RTP, NC 27709
Get access

Abstract

The light ion impurities C, O and H have been implanted or diffused into GaN and related compounds and their effect on the electrical properties of these materials measured by Hall, C-V and SIMS as a function of annealing temperatures from 300-1100ºC. While C in as-grown GaN appears to create an acceptor under MOMBE conditions, implanted C shows no measurable activity. Similarly, implanted O does not show any shallow donor activity after annealing at ≤ 700°C, but can create high resistivity regions (106 Ω/□) in GaN, AlInN and InGaN for device isolation when annealed at 500–700°C. Finally, hydrogen is found to passivate shallow donor and acceptor states in GaN, InN, InAIN and InGaN, with dissociation of the neutral complexes at >450°C. The liberated hydrogen does not leave the nitride films until much higher annealing temperatures (>800°C). Typical reactivation energies are ∼2.0eV for impurity-hydrogen complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47 5387 (1976).Google Scholar
2 Strite, S., Jap. J. Appl. Phys. 33 1699 (1994).Google Scholar
3 Abernathy, C. R., MacKenzie, J. D., Pearton, S. J. and Hobson, W. S., Appl. Phys. Lett. 66 1969 (1995).Google Scholar
4 Chung, B. C. and Gershenzon, M., J. Appl. Phys. 72 651 (1992).Google Scholar
5 Molnar, R. J., Nichols, K. B., Maki, P., Brown, E. R. and Melngailis, I., Mat. Res. Soc. Symp. Proc. Vol. 378 479 (1995).Google Scholar
6 Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jap. J. Appl. Phys. 28 L2112 (1989).Google Scholar
7 Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., Jap. J. Appl. Phys. 31 1258 (1992).Google Scholar
8 Abernathy, C. R., MacKenzie, J. D., Shul, R. J., Howard, A. and Williams, J. S., Proc. Electrochem. Soc. 95–211 (1995).Google Scholar
9 Tansley, T. L. and Foley, C. P., Electron. Lett. 20 1066 (1984).Google Scholar
10 Abernathy, C. R., Wisk, P., Ren, F. and Pearton, S. J., J. Vac. Sci. Technol. B11 179 (1993).Google Scholar
11 Zolper, J. C., Pearton, S. J., Abernathy, C. R. and Vartuli, C. B., Appl. Phys. Lett. 66 3042 (1995).Google Scholar
12 Zolper, J. C., Baca, A. G. and Chalmers, S. A., Appl. Phys. Lett. 62 2536 (1993).Google Scholar
13 Zolper, J. C. et al. (to be published).Google Scholar
14 Abernathy, C. R., Mat. Sci. Eng. Rep. 14 (5) 204 (1995).Google Scholar