Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T00:50:46.399Z Has data issue: false hasContentIssue false

The Role of F Atoms in the Reactive Sputter Etching of Silicon Dioxide: Langmuir Probe and Optical Actinometry Measurements

Published online by Cambridge University Press:  25 February 2011

C H. Steinbrüchel
Affiliation:
Mettler Instrumente AG, 8606 Greifensee, Switzerland
B. J. Curtis
Affiliation:
Laboratories RCA, Badenerstrasse 569, 8048 Zurich, Switzerland
Get access

Abstract

Reactive sputter etching of SiO2 in a low-pressure CF4 -O2 plasma has been investigated using a Langmuir probe to determine ion fluxes to the substrate and optical actinometry to monitor the concentration of F atoms, [F]. Etch yields Y, i.e. the number of substrate atoms removed per impinging ion, are obtained vs O2 composition and vs pressure. At constant pressure Y decreases slightly, but [F] increases considerably, with increasing O2 content. On the other hand, at constant O2 composition both Y and [F] increase strongly with increasing pressure. These results suggest that at low [F], relative to the ion flux to the substrate, the dominant etch mechanism is direct reactive ion etching, with the ions themselves as the main reactants, whereas at high [F] the overall etching is ion-enhanced, with F atoms as the main neutral reactants.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Winters, H.F. et al., J. Vac. Sci. Technol. B 1, 469 (1983).Google Scholar
2. Steinbrüchel, Ch., Lehmann, H.W., Frick, K., Mat. Res. Soc. Symp. Proc. 38, 157 (1985); J. Electrochem. Soc. 132, 180 (1985).Google Scholar
3. Winters, H.F. and Coburn, J.W., J. Vac. Sci. Technol. B 3, 1376 (1985).Google Scholar
4. Steinbrüchel, Ch., Curtis, B.J., Lehmann, H.W., Widmer, R., IEEE Trans. Plasma Sci. PS–14, 137 (1986).Google Scholar
5. Tu, Y.Y., Chuang, T.J., Winters, H.F., Phys. Rev. B 23, 823 (1981).CrossRefGoogle Scholar
6. Loudiana, M.A. et al., Surf. Sci. 141, 409 (1984).CrossRefGoogle Scholar
7. Steinbrtchel, Ch., J. Electrochem. Soc. 130, 648 (1983).CrossRefGoogle Scholar
8. Coburn, J.W. and Chen, M., J. Vac. Sci. Technol. 18, 353 (1981).Google Scholar
9. Coburn, J.W. and Chen, M., J. Appl. Phys. 51, 3134 (1980).Google Scholar
10. Savas, S.E., Appl. Phys. Lett. 48, 1042 (1986).CrossRefGoogle Scholar
11. Millard, M.E. and Kay, E., J. Electrochem. Soc. 129, 160 (1982).Google Scholar
12. Pang, S. and Brueck, S.R.J., Mat. Res. Soc. Symp. Proc. 17, 161 (1983).CrossRefGoogle Scholar
13. Steinbrüchel, Ch., J. Vac. Sci. Technol. A 3, 1913 (1985); B 2, 38 (1984).Google Scholar
14. G.C. Schwartz et al., J. Electrochem. Soc. 126, 464 (1979).Google Scholar
15. Mayer, T.M. and Barker, R.A., J. Electrochem. Soc. 129, 585 (1982).Google Scholar